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1. INTRODUCTION

Recent interest in linear induction motor applications for
high speed ground transportation has stimulated a number of theo-
retical investigations of single and double-sided linear induction
motors (LIMs). As a result of these investigations, different
mathematical LIM models have heen developed and applied to predict
the performance characteristics of real LIMs. This report de-
scribes three such models representing widely different approaches
for treating linear induction motors. The mathematical theories
based on these models comprise three current LIM theories which
have been applied with a high degree of sucd¢cess to investigate
the performance characteristics of different high speeds LIMs.
These include the LIM theories developed by K. Oberretl(l) (Brown-
Boveri, Zurich, Switzerland), S. Yamamura(z) (University of Tokyo,
Japan), and H. Mosebach(s) (University of Braunschwieg, Braunsch-
weig, Germany).

This study has several objectives. One of these objectives
is the development of software (computer models) which could be
used fcr parametric studies of linear motors. In the past, such
software his proved helpful in the analysis of LIM test data, as
for example, through the comparison of measured test data with
predicted LIM performance, and as a tool to be used in the design
of linear induction motors. During the course of this study, com-
puter programs were developed for the Yamamura (one-dimensional)
model and the Oberretl (three-dimensional) model; this software
was later supplemented by a computer program describing the
Mosebach (one-dimensional) model, courtesy of Prof. H. Mosebach.
All three computer programs were extensively used in the early
phases of this investigation to study the effectiveness of the
three theories in predicting real motor characteristics. In the
later phases of the investigation, software studies were directed
more towards examining the limitations of each theory as related
to spproximations introduced in the mathematical solution of the
wave equation. These numerical studies were restricted to two



particular high speed linear induction motors, namely the Linear
Tnduction Research Vehicle (LIMRV) LIM and the Tracked Levitated
Research Vehicle (TLRV) LIM. This insured a common base for the
analvsis of the three theories and for the quantification of
differences in LIM performance as predicted by the three theories.
The availabilitvy of LIMRV test data obtained from test runs con-
ducted at Pueblo, Colorado, proved particularly helpful in
assessing the reliability of these theories.

Another objective of this program is the in-depth study of
the Mosebach, Obarretl, and Yamarmura LIM models and the field
solutions of Maxwell's equations appropiate to each model. It
boundarv effects are ignored, the models predict motor perfor-
mance which is characteristic o 'idealized' rotary induction
machines. With boundarvy conditions included in the model descrip-
tion, the theories exhibit large differences depending upon the
relative importance each theory assigns to a given boundary
phenomena. Thus, the Mosebach model neglects variations in field
quantities along the LIM normal axis but includes boundary effects
associated with the finite size of the primary ferromagnetic
region (stator core). The Oberretl and Yamamura models include
the variations in field quantities along the LIM normal axis but,
neglect boundary conditions associated with the finite size of
the primary ferromagnetic region. One purpose of this study is
to examine the different LIM models and to investigate the effect
of the different boundary conditions and assumptions on predicted
LIM performance.

During the initial phases of this study, the Oberretl and
Yamamura theoretical preditions were compared with similiar pre-
dictions based on the mesh-matrix method* of LIM analysis. The.
mesh-matrix theory as developed by Dr. D. Elliott includes the
cffect of a finite length stator core structure which is neglected
in the Oberretl and Yamamura theories. Later in the study, the
Mose?ach computer program became available and was subsequently

¥Talculations based on the mesh-matrix approach were kindly sup-
plied bv Dr. D. Elliott, JPL, Pasadena, California.



used to provide comparative data describing the effect of finite
core length on LIM performance.

The remaining sections of this report describe the Oberretl,
Yamamura, and Mosebach theories of the linear induction motor.
Each section contains a description of the respective LIM model
and the mathematical solution of the wave equations with boundary
conditions appropiate to each model. The final material in each
section presents numerical studies of predicted LIM performance
using computer models developed during the course of the work.

The numerical studies were restricted to the LIMRV and TLRV linear
induction motors. This was done intentionally in order to provide
a common base for the comparison of the different theoretical
prediction and to give a basis for judging the practicabilitv of
each theory through comparison of predicted and measured LIM data.
Each section contains a summary of conclusions describing the
significant results obtained during the course of the studv.

These conclusions together with the supplementary review material
contained in the introduction should provide the reader with an
appreciation of the capabilities as well 3s limitations of the
three theories. Since the original publication of the Oberretl,
Yamamura, and Mosebach LIM treatments, some modifications of the
theories have appeared in the literature. These modifications
involve only slight changes in the theories and r:finements in

the models. Their publication does not detract from the value of
this report in presenting an in-depth review of three current
leading LIM theories.



2. TECHNICAL DISCUSSION

An exact EM wave solution of a finite linear motor is impos-
cible and one must attempt either approximate solutions of the
real complex machine or exact solutions based on idealized models
of real machines. The latter approach is the one most commonly
adopted in most LIM treatments. The LIM stator (primary) is
generallv described by an equivalent MMF distribution of finite
length and width 'supported' by ferromagnetic backing of infinite
permeability. The LIM reaction rail (secondary) is representecd
by a conducting sheet of uniform thickness and conductivity. The
finite size of the stator (iron) core is treated in the Mosebach
analvsis, as an equivalent airgap function which is designed to
yield fringing fields at both motor ends in close agreement with
measured fringing fields. The problem of leakage fields and their
description in the LIM model is one usually omitted in LIM treat-
ments. The effect of such fields is most easily handled in an
equivalent circuit representation using empirically derived values
for the primary and secondary leakage reactances.

An exact representation of a real LIM by an equivalent model
would require the model to duplicate the MMF and field distribu-
tions of the real LIM at all points in space. Since the mathema-
tical description of such a model wourld be impossibly difficult,
the alternative is to seek a model which simulates the current-
field distributions within the active region of the motor or which
approximates the field distribution at the midplane of the LIM.
Once the B, H distributions are defined aiong the midplane, the
LIM thrust and normal force components can be evaluated using the
Maxwell stress tensor.

One method of developing a LIM model is to conceive of the
model as comprising an idealized rotary induction motor with
superimposed boundary conditions to simulate the finite motor
structure. This approach requires boundary conditions to be
specified at the edge boundaries of the motor; in addition, the
EM configuration of the adjoining regions must also be defined.



The manner in which these boundary conditions are set forth
distinguishes the three theories from each other. In each of the
three theories, the transverse edge-effect and end-effect have an
important effect in determining LIM performance. Both boundary
effects lead to solutions of Maxwell's equations which are
describable by damped exponential waves. The waves produced by
the transverse edge boundaries propagate inwards from both edges;
the corresponding waves generated by the longitudinal end bounda-
ries propagate along tne longitudinal axis of the LIM. The manner
in which these boundary eftects are included in the LIM models is
discussed below.

A. LIM Edge-Effect

The LIM edge-effect results from the finite width of the
motor stator and the finite width of the secondary reaction rail.
The currents flowing in the secondary are constricted at the edge
regions due to the finite extention of the secondary in the over-
hang region. Unlike squirrel-cage induction motors, the secondary
currents are not confined to fixed current contours but are free
to flow in paths limited only by the width of the conducting
sheet. The current flow pattern is dictated by the relative path
impedances for the different current contour paths. These path
impedances change with slip-frequency resulting in flow patterns
which likewise vary with slip-frequency. A desirable characteris-
tic of the LIM model is its ability to describe changing secondary
current flow patterns with different operating conditions of the
motor.

One consequence of the finite width of the LIM stator is the
difference in reluctance experienced by flux at the motor edge
compared with the flux within the 'active' region of the motor.
This is illustrated by the sketch shown in Figure 1 giving the
airgap flux components and the currents in the LIM secondary.
Flux generated by the secondary currents closes around both the
active current component, Jz, and the cross-current component,
Jx' The path reluctance associated with the flux component, FRl,
and determined by the gap between primary cores, is considerably
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less than the path reluctance for flux component, FRZ. A further
difference exists also in the fact that flux component, FR;,
enters the stator block within the plane of the stator laminations
while flux component, FR,, enters the stator block in a direction
at right angles to the piane of the laminations. In the latter
case, Eddy currents are generated in the laminations, which
further act to increase the effective path reluctance of flux com-
ponent, FRZ‘

The Mosebach (one-dimensional) and Yamumura (Bolton edge cor-
rection) theories take account of the different path reluctances
bv setting the edge path reluctance eqt.al to infinity. This
assumption forces the field outside the motor edge to be zero.

(4) which is

The Bolton theory of the transverse edge effect,
used by Yamamura to co:rect for edge-effect, predicts transverse
flux distributions which agree closely with field distributions
in LIMs operating at low speeds. Since the Bolton analysis
neglects end-effect, the Bolton correcticn factors should be
less accurate at high LIM speeds where end-effect becomes impor-
tant. A more exact treatment would include wedge-effect correc-
tions for all harmonic waves propagating in the LIM, including

the harmonic waves whose sum comprise the end-effect waves.

The Mosebach (one-dimensional) theory includes the higher
harmonic fields in the treatment of the edge-effect; however, it
introduces some severe restrictions regarding tte shape of the
secondary current path distribution. This is ijiustrated in
Figure 2, which shows a sketch of the secondary current flow pat-
tern as assumed in the Mosebach model. Within the active region
of the motor, i.e., |z]=-,. only z-directed (transverse) currents
flow: outside the .ctivc region, only x-directed currents flow.
The increased current path required for the secondary current
results in an increase in the effective secondary resistivity over
that which would exist for the case of an infinite sidebar conduc-
tivity. It can be shown that the increase in the effective
secondary resistivity for the Mosebach model is equivalent to
the corresponding increase in effective resistivity in the Bolton
analysis at low slip-frequencies, i.e., when the LIM is operated
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in the resistive mode. When the LIM is driven at higher slip
frequencies, i.e., in the inductive mode, the Mosebach edge-etfect
treatment yields results which diverge from those of Bolton. The
matter of judgment enters into the choice of which model to use
when examining a speciric operating region of the I IM. Based

upon the elge-effect consideration, one woculd expect the Yamamura
model using the Bolton edge correction to be the best choice at
high slip-frequencies (low motor speeds) and the Mosebach model

to be the best choice at low slip-frequencies. .

The Oberretl model treats the transverse edge effect in th2
same way as the longitudinal end-effect. It includes the simul-
taneous interaction or coupling between the edge and end-effect
phenomena. A limiting feature in the Oberretl theory is its
assumption of continuous ferromagnetic region in the primary, that
is the stator core is assumed to extend to infinity along the
plane of the motor. This assumption leads to excessively large
magnetic fields in the trailing end of the LIM at high motor
specds. While such fields have little effect on LIM thrust, they
do tend to exaggerate the LIM normal force and total magnetic
energy stored in the LIM.

The Oberretl model treats the real LIM as an array of peri-
odic cells extending along the longitudinal and transvcrse axes
of the motor. This representation permits the two-dimensional
Fourier expansion of the motor currents and fields along the prin-
cipal axes using as base wavelength the length of the periodic
unit cell. In the expansion along the transverse axirs, the cell
length is taken as the width of the secondary. A practical pro-
blem exists in the Fourier expansion when one attempts to describe
the rapidly varying fields at the motor edges using a Fourier cell
which extends only a short distance beyond the motor edge. A
relatively large number of harmonics is required in such an expan-
sion to describe the rapid field variation. Since the Fourier
expansicn must be limited to a finite number of terms, a judgment
must be made on the maximum number of terms to use based on
desired accuracy and computer costs required for the calculations.



B. LIM End-Effect

In constrast to the edge-effect which alters LIM performance
over the complete range of operating speeds, the end-effect,
associated with the finite length of the LIM, affects motor per-
formance predominantly only at high motor speeds and low operating
slip-frequencies. This applies to end-effect arising from both
the finite length of primary MMF distribution and finite length
of the stator core.

The finite MMF disEributiun is modelled in the three LIM
theories as an equivalent sheet current density extending over the
length of the primary excitation. The Mosebach and Oberretl
models provide for arbitrary primary current excitations using
Fourier expansions to develop the equivalent current density
distribution. The Yamamura model is not refined to include
arbitrary primary excitations; instead, the primary excitation is
restricted to a fundamental wave which extends over a motor length
equal to the distance spanned by the equivalent number of electri-
cal pcles. In using the Yamamura model, one should consider the
relative amplitudes of the higher primary current harmonics and
their possible effect on the predicted LIM performance. Fortu-
nately, the fifth, seventh, and higher-harmonics generally con-
tribute very little to LIM thrust under most conditions and their
neglect does not introduce significant errors in the computed LIM
characteristics.

The Oberretl and Yamamura models assume the primary ferro-
magnetic region is continuous in the plane of the motor, while the
Mosebach model is refined to include the finite length of the
primary ferromagnetic region. The so-called magnetic end-effect
associated with the finite iron core structure becomes important
at high motor speeds and low slip- frequencies. In this region of
LIM operation, the Mosebah model predicts a lower thrust and
output mechanical power than that predicted by the Oberretl and
Yamamura models. A more dramatic difference in predicted motor
characteristics occurs in the estimated LIM normal forces and
power factor. Since the assumption of continuous ferromagnetic
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region leads to large flux distributions in the trailing (wake)
region of a high-speed LIM, the Oberretl and Yamamura models
overestimate the attractive normal forces developed between the
two halves of the LIM primary and the total stored magnetic energy
in the field. The latter is reflected in larger input voltages

to the LIM for a given output power delivered by the LIM, or
equivalently to a larger input impedance to the LIM. From the
standpoint of the use of the computer program for LIM design, the
Mosebach program offers an advantage over the Oberretl and Yamamura
programs. In addition to predicting more realistic magnitudes

for the stored magnetic energy, the Mosebach program is capable

of computing the input impedance as seen by each phase winding of
the LIM. From this, one is able to estimate the degree of phase
unbalance existing between the different motor windings, and to
evaluate the effect of such unbalance on the operation of the LIM
power conditioning equipment.

2.1 THE OBERRETL THFORY OF THE LINEAR INDUCTION MOTOR
2.1.1 The Oberretl LIM Mode1(1)

The Oberretl treatment of linear induction motors begins by
replacing the actual LIM with a three-dimensional model, combining
a two-dimensional Fourier mmf distribution with an exact solution
of the diffusion equation along the direction normal to the pri-
mary surface. The mmf is developed by superimposing mmf contribu-
tions from an infinite array of adjacent primary elements lying
in the plane of the stator. This leads to a Fourier series repre-
sentation for the total mmf equal to the sum of an infinite number
of (mmf) harmonics, each defined by its respective harmonic-order
along the longitudinal and transverse wave vector directions. To
limit the time required for numerical computations, a limit is
imposed on the maximum number characterizing the series. The
choice of the values of maximum harmonic number represents a com-
promise between excessive computing time and suflicient harmonics
required to describe adequately the mmf-distribution. The airgap
flux density, which is also expressed in a Fourier series, is

11



derived from the magnetic vector potential with suitable pre-
scribed boundary conditions. LIM thrust and normal forces are
determined by integrating the Maxwell Stress Tensor over the
region bounded on one side by the secondary.

The Oberretl model is based on the following assumptions:

a. Current densities normal to the primary and secondary
members are zero. Current flow in the primary and secondary ele-
ments lies in a plane parallel to the primary.

b. The permeability of the primary is infinite.

c. Edge-effects associated with the primary ferromagnetic
region are neglected; i.e., magnetic end-effects are ahsent. Only
end-effects associated with finite winding current distributions
are included in the analysis.

d. The active primary current density is constant along the
transverse direction within the confines of the primary (stator)
and decays to zero at a distance, h, beyond the primary edge
according to 1 - sin Lfi%ll, where z is the transverse distance
relative to the primary midplane and ¢ is the half-width of the
primary element. As pointed out by Oberretl, other current den-
sity functions could be substituted for the above, provided they
relate correctly to measured field distributions.

e. The mmf and flux density distributions are periodic func-
tions of distance along the longitudinal and transverse directions
of the motor. To develop this periodicity, mmf gaps are inserted
at periodic positions along the longitudinal and transverse axes
of the motor.

2.1.1.1 Criteria for Choosing Longitudinal MMF Gap

The Oberretl theory inserts an mmf gap adjacent to the primary
in order to develop an mmf-distribution function which is periodic
along the longitudinal (and transverse) axis of the motor. The
choice of longitudinal gap length is critical in that too small a
gap length causes unrealistic oscillations in the thrust-frequency
characteristic while too large a gap length results in an

12



unreasonably long computation time. The criteria adopted in
choosing the gap length is that the length be sufficiently lony
to allow the end-effect wave to decay to a small value. A choice
of gap length equal to twice the decay length of the end-effect
wave appears to be a reasonable compromise.

The decay length of the principal end-effect wave is given
approximately by the reciprocal of the following quantity,(4)

Z
oV 1 o’ o ey (1)
REAL (7_"58 - 7‘I(:_S.E "3 g

for LIMs having a pole gap separation g, secondary surface resis-
tivity pgs Stator excitation frequency w, and motor speed V rela-
tive to the secondary rail. For the TLRV LIM operating at 300
mph and a frequency of 165 Hz, the computed decay length was 11
meters; for the LIMRV orerating at 250 mph and a frequency of 165
Hz, the computed decay l:ngth was 7.3 meters. See pages 26 and 32

for a summary of motor parameters describing the respective motors.
In the computer studies of the TLRV and LIMRV motors, the respec-
tive gap lengths chosen were 33.212 and 11.096 meters.

2.1.1.2 Primary Winding Factor

Oberretl expresses the primary mmf, 8(x,t), in terms of the
sum of mmfs of each coil described by

NI /2 ky

— e j (mt-vx*vB*ﬂ/m). (2)

e(x,t) = j

“kw is the winding factor associated with the vth harmonic, B is
the phase angle of the harmonic, m is the number of phases in the
winding, and N is the number of turns in each coil. The deriva-
tion of “kw follows from summing the mmf contributions of each

coil described by

v(K-1)a

+

Vg = El’zSinV(IQ~e)% e [“t’vx'(k‘l)%l
LAY

+ v(p-l)nqa*v(k-l)an] . (3)
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Here a is the slot pitch in radians, k denotes the phase
number, q denotes the particular ccil in a given phase group, and
¢ is the reduction in width of the coils (coil pitch) in units of

slots. For a double-layer winding with half-fiiled end slots,
there exist

1, 2,.....k.....m phases,
1, 2,.....X.....q colils in each coil group,
1, 2,.....p.....p* coil groups per phase.

The series summation of coils in a phase group leads to
sin g% . (q-1)%°

e !
sinz% .

The series summation of phase groups associated with the m phases
of the primary yields

sin m(vqa-7/m) j(m-l)(vqa-ﬂ/m)
sin (vqa-7v/m)

The series summation of the coil groups of a gi-en phase gives

. P umqa -1} mvqa
g )

sin vmqa :
Finally, the "reverse-connected” coil groups are related to the

"forward-connected" coil groups by the factor

"Note that Oberretl uses p to denote pole pairs.

14



1 - expj(vmqa'") = 2j sinxgﬂg

since the ''reverse-connected" coil groups are both spatially and
electrically 180 degrees out-of-phase relative to the '"forward-
connected'" coil groups. Combining the above factors jinto a single
expression, Oberretl obtains (Reference 1, p. 7)

. P
v . siny vmqa sinvmqa , sinqva/2 | sinvmq-e q sinm(vqa-w/m)(4)
w sinvmqa 2 sinva/Z Z sin(vqa-n/m)

The above equation is not valid for a LIM with odd numbers of poles
since it gives infinitelv large vkw values when vmqo-m.

An alternate expression for the winding factor which is valid
for both even and odd numbers of motor poles can be derived by
summing the mmf contributions first within a pole pitch and next
over the number of half-wavelength contributions comprising the
motor. Thus summing the coil groups within a pole pitch gives

< j['(k-l)%+v(k-l)qa] sing(vqu-ﬂ/m). ej(Eil)(TQG-%)

;g; € = Sin\vga-wlm)

and summing the respective pole-pitch contributions over the en-

tire length of the motor yields

. Vmaoa-T vmqao -
P .[\)(o-l)mqa*(o-l)ﬂ] ilnp—z j(p-l)(— ")

:E el Ll | oip UMQO-T ¢ e

p=1

This leads to the following expression for the winding factor

. S UMQo- T .__vqa-n/m
Vi . sinP ; . sinqva/2 | sinvmq-€ q Sinm—y
w sin vmqa- T sinva/2 b sin vqa-n/m

Equation 5 was used instead of Equation 4 to compute the primary
mmf in the Oberretl computer program developed as part of this
study.

(s)
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2.1.1.3 Primary Harmonic Current Distribu.ion

The Oberretl model substitutes for the actual primary current
distribution in the stator, an effective current density (sheet),
az(x,z), given by

nnz j(?t-vxl% * %) (6)
az(x,z) = J(v,n) cos—t1— e
n v

where J(v,n) is the amplitude of the Fourier current harmonic for
transverse (z-directed) currents, % and L are the length and width
respectively of the "unit periodic cell", and v and n and the
respective harmonic orders along the longitudinal are transverse
wave vector directions. The harmonic amplitude, J(v,n), is given
explicitly by

16 NI,vZ “k n,

J(v,n) = Y . (7)

w
ampere-turns in a single stator slot, and n'y the amplitude of the

transverse dependence of the mmf-distribution.

Here “k_ is the winding factor for the vth harmonic, N Il the

A. J(v,n) dependence on longitudinal harmonic order, v.

The variation of J(v,n) with longitudinal harmonic order is
presented in Figure 3 (solid curve) using the motor parameters
listed in Section 2.2.1. For the purpose of calculation, the
transverse harmonic order, n, was set equal to 1. For the choice
of gap length, 22 = 33.212 meters, the peak Fourier harmonic at
vg = 198. (197.5) and the effective 7th Fourier harmonic at vy =
277 (276.5). It is interesting to ccmpare the Oberretl harmonic
current density function (Equation 7) with the Fourier transform
of a single harmonic wave,

sin ((kx - k)¢
J(k) = Jy k(_ — s), (8)
o

ls is the distributed length of the current density wave, k the
independent wave propagation number equivalent to vmqa/tp in the

Oberretl model, and ko the propagation number of the wave equal

16
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to n/1t_. Setting k equal to the wave number of maximum J(v,n)

in Figure 3 and 2 equal to the effective length of the TLRV
stator (% ‘PTp), the dashed curve shown in Figure 3 is obtained
for the harmonic current distribution J, in Equation 8 was
normalized to the peak amplitude computed from Equation 7. Figure
3 shows that the harmonic snectrun derived from a single-harmonic
wave represents a fair approximation to J(v,1) in the spectrum
region of the principal harmonic contribution, i.e., 10<v<70.

Since the contribution of the higher-order harmonics to the LIM
reaction forces is comparatively small, the stress tensor compon-
ents evaluated using the' single harmonic transformation (Equation
8) should not be sigrificantly different from those evaluated
using the multi-harmonic transform function (Equation 7). Since
Yamamura and Oberretl use Equations 8 and 7 respectively to
describe the primary harmonic current spectrum, a comparison of
the reaction forces computed using the two methods should indicate
whether the above conclusion is valid.

B. J(v,n) dependence on_transverse harmonic order, n.

The Oberretl model assumes the primary current density to
vary with transverse displacement as shown in the sketch below.
For z-positions within the confines of the primary, i.e., -c<z’C,
the primary current density is constant. Bevond the primary edge,
the current density decays to zero in a distance h according to
1 - Siniéﬁil" and remains zero in the regions defined by

c+h<jz|<L/2. Oberetl indicates this choice of z-functional depen-
dence for the primary current is somewhat arbitrary and other
functional dependences could be used in its place, provided they
are consistent with results of field measurements.

)

J(z)

z

-(c+h)-c 0 c+h

o]

|

l

|

I
I
L

7

-
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c=0.095 m A =7
h=0.1 m.
L=0.508 m.

AMPLITUDE,

TRANSVERSE DISPLACEMENT -z, meters

FIGURE 4. TRANSVERSE CURRENT DISTRIBUTION OF
TLRV LIM AS COMPUTED BY OBERRETI. THEORY

Oberretl expresses the above current distribution in terms of
the Fourier Series

2
L
(zg) :
8(z) = % :z fﬁ — [%s1nwn(c*h) . %h coswnc] CosSnTZ (g)
n (Zﬁ)

n=1, 3, 5, «..

where the term in brackets {} corresponds to ny in Equation 7.
Figure 4 shows a sketch of 6(z) as a function of the transverse
displacement along the z axis for increasing values of maximum
harmonic order, n .., for the TLRV LIM. The larger the value of
Naax? the better the approximation to the "ideal" current distri-
bution function corresponding to n . =®. Large n_ . »
results in excessive computing time and a compromise is necessary
between computational costs and the relative "accuracy" of the
current distribution function. 1In the TLRV and LIMRV LIM calcula-

tions described later in the report, R, was chosen equal to the

however,
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value uscd by Oberretl in his LIM calculations, namely, n
The use of a two-dimensional Fourier representation to de-

scribe the primary current causes the propagation vector in the

secondary along the normal direction to be a function of both

longitudinal and transverse wave numbers. This appears to be the

basis for the Oberretl claim to a three-dimensional model. It

leads to a reduction in the dependence of computed thrust on the .

longitudinal harmonic number only, which in the case of the

Yamamura theory (Reference 2, p. 98) results in oscillatory type

behavior in the thrust-versus-slip characteristics of high speed

LIMs near small motor slips.

2.1.1.4 Thrust Harmonic Amplitude Distriﬁution

The LIM thrust in the Oberretl model is found by summing
harmonic thrust contributions over the longitudinal (v) and
transverse (n) harmonic wave orders. If F(v,n) is the amplitude
of the v, nth thrust harmonic, the LIM thrust is given by

Fx -z Z F(v,n)

v n .

where

2 2
LLeau. J5(v,n) Im(C,,)
F(v,n) = — o1 12

(10a)
| sinhdge C,, coshig|®

'IA7+jwuzozvs rz——'v ¥ b
Clz - —X-‘TE——- t‘nh A ‘juuzoz s 7 . (10b)

A is the wave number in the airgap along the normal direction, o,

is the conductivity in the secondary, u, is the permeability of .
the secondary ecual to Ua=M Mg and Vs is the harmonic slip given

by vs-l-v(l-s)nqa/w.

Figure S presents a plot of Equation 10 as a function of
longitudinal order (v) for the TLRV LIM at line frequencies of
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FIGURE 5. THRUST HARMONIC SPECTRUM OF TLRV LIM AS COMPUTED BY
OBERRETL THEORY
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150, 175, and 200 Hz. For purposes of calculation, the transverse
harmonic order was set equal to unity. Motor speed was fixed at
300 mph and line current at 530 amperes corresponding to condi-
tions assumed in the later TLRV LIM calculations. The remaining
TLRV parameters used to compute F(v,n) are given in Tatle 1. The
figurisillustrates several features of the harmonic thrust func-
longitudinal harmonic orders centering on the principal harmonic
order Yo associated with the fundamental wave number. In this
example of the TLRV LIM, the principal harmonic order v°=40 corre-

tion. First, F(v,n) is large only within a limited range of

sponds to the peak current density as shown in Figure 3. Second,
F(v,n) is zero at periodic values of longitudinal harmonic order
since J(v,n) = 0 for v = vo(l + 2m/P), (m=1,2,3,..)- Third, F(v,n)
shows a rapid change at the singular point v = vO/(l - slip).
Special care must be exercised in the numerical integration of
F(v,n) in the region of the singularity, particularly at frequen-
cies near zero motor slip. Iwamoto 5) suggests the use of finite
difference methods for improving the accuracy of the numerical
integration in the region of the singularity.

2.1.1.5 Airgap Flux Density

The LIM flux density distribution in the Oberretl theory is
described by an infinite Fouvier series of spatial harmonics along
the longitudinal and transverse axes of the motor. The components
of flux density at the surface of the secondary can be written in
the form

-j(kxx-ut)

B, = :E B (v,n) C;, cosk,z e (11)

v n

-j(k x-wt)
Dy - jz zé Bo(v,n) cosk,z e I (kgxoo
vV n
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s e K -j(k_x-wt)
B, = -i z . b 4
z é E E; Bo(v,n) C12 s1nkzz e (13)
vV R

where
(6N T,V k. n
= w ——
o TZ_(sinlig + C),coshig)

Bo (v,n)

and kx’ kz are the wave number components along the x,z axes re-
spectively, i.=2., kx=v21/l,kz-nw/L. Ci2 is defined in Equation
10b.

The flux density components defined by Equations 11 through
13 determine the stress tensor components evaluated at the sur-
face of the sa2condary. Therefore, the correctness with which
these equations describe the flux density in an actual LIM is
critical to an accurate calculation of LTM forces. A comparison
of the computed flux density components with that obtained from
flux mappia ir the motor airgap offers a check on the effective-
ness of the LIM model to represent an actual LIM.

Figure 6 gives the airgap flux density computed as a function
of displacement distance along the transverse axis using parameters
appropriate to the TLRV LIM. Mozor speed was taken as 300 nph and
line frequency as 200 Hz. Three curves are presented correspond-
ing to three different values of maximum transverse harmonic num-
ber n .. The curves show that the flux density tends to peak
inside the primary region with increasing Npax? with the position
of maximum flux density occurring near the inside edges of the
primary. For "max'17’ the flux distribution approaches the form
predicted by Bolton(4) for DLIMs with symmetric secondaries. The
additional peak in flux density which occurs outside the region
of the primarv is disturbing, since in actual LIMs the flux den-
sity tends to decay monotonically with distance frcm the stator
edges. The exact reason for the second peak in t.c computed flux
distribution is not known, but it might be associated with the
assumption of a continuous ferromagnetic region in the nrimary.

Its existence raises questions regarding the ability of the
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Oberretl model to describe accurately effects related to the
finite width of the motor.

The ratio of thrust for increasing n_ . . values normalized to
the thrust for nmax-zs is shown in tabular form in Figure 6. The
table shows an increase in computed thrust with increase in n ook

for this LIM example; at n x-7, the thrust is 95 percent of the

ma

value computed for nmax-ZS. In view of the irregular behavior of

the flux density distribution along the transverse axis and

dependence on ng. .,

ted with greater accuracy when noax is larger as compared with

it is not clear whether the thrust is compu-

n of a smaller specified value.
max



2.1.2 Application of Oberretl Computer Model to TLRV § LIMRV LIMs

The following sections summarize results of computer studies
of TLRV and LIMRV motors, using a computer program based on the
Oberretl model. All computations were performed using the PDP-10
Computer located at the Transportation Systems Center, Cambridge,
Massachusetts. Computer times required for typical runs compris-
ing ten cases (variable slip or frequency) were of the order of
60 seconds.

2.1.2.1 TLRV Linear Induction Motor

The TLRV thrust and normal forces were computed for a fixed
input line current of 700 amperes and motor speed of 300 mph
(134.1 m/s). The motor parameters used in the calculations are
given below. The dimensions of the motor 'unit cell' forming the
basis for the two-dimensional periodic array are shown in Figure
7. The longitudinal and transverse mmf gap lengths were taken
respectively at 33.212 and 0.199 meters. Longitudinal (v) harmon-
ics were summed over the range -120<v<120. Transverse (n) harmon-
ics were summed fromn = 1to 5, i.e., n = 1, 3, and 5.

TABLE 1. TLRV LIM PARAMETERS IN OBERRETL MODEL

Turns per Coil (N) = 4

Pole Pitch (1p) = 448 m.

Core Width (2c) = .1905 m.

Poles (P) = §

Core Length (ls) = 2,56 m.

Air Gap (g) = .0171 m.*

Phases (m) = 3

Slots per Phase (q) = §

End Half-filled Slots (¢) = §

Secondary Thickness (b) = .0066 m.
Secondary Resistivity (p) = .416x10'7 ohm-m.
(Coil Overhang (h) = .01 ».

longitudinal MMF Gap “'s) = 33,212 m.
1ransverse MMF Gap = .199 =m.

Longitudinal Periodic Wavelength = 35.772 m.
Transverge Periodic Half-wavelength (L) = 54 m.
Motor Speed (V) = 134.1 m/s
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2.1.2.2 TLRV Thrust-Frequency Characteristic

The TLRV thrust computed for frequencies in the range of 15°f
to 200 Hz is shown, in Figure 8. The corresponding thrust predic-
ted by the mesh-matrix model(s) is also presenteu for ccmparison.
The thrusts computed using the Oberretl model are about one-third
larger than those computed by Elliott. The choice of longitudinal
mmf gap length was sufficiently long to insure effective damping
of the end-effect wave inside the periodic length defined by the
"unit cell” of the motor,

It is interesting to speculate on the reasons for the diver-
gent thrust predictions. The computer analysis of Elliott in-
cludes current and magnetic end-effects and assumes finite lengths
for both the mmf and primary ferromagneti- regions. In contrast,
the Oberretl analysis neglects ferrcuzgnetic end-effects; however,
as Yamamura (Reference 2, p. 67) points out, this should have a
relatively small effect on the value of computed thrust. In the
Fourier series representation of primary mmf, only three harmonic
terms were included in the summation of transverse wave numbers,
i.e., n=1, 3, 5, in the Oberretl computer program. If additional
harmonic terms had been included in the summation, it is likely
that the thrust predicted by Oberretl would increase slightly
since thrust is directly proportional to (ny)2 or the square of
the transverse harmonic amplitude defined by Equation 2. This,
however, would cause the Oberretl-Elliott thrust predictions to
diverge even more than indicated in Figure 8.

2.1.2.3 TLRV Normal Force-Frequency Characteristic

The corresponding normal forces computed as a function of
frequency are shown in Figure 9 for the TLRV. The mesh-matrix
predictions for the same conditions are indicated by the dashed
curve. Both results predict a zero force crossover frequency near
190 Hz. Oberretl's theory gives considerably larger normal forces
than does the mesh-matrix model at frequencies below the crossover
point. Such a large discrepancy in predicted forces is believed
associated with the failure of the Oberretl theory ("infinite
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iron") to include the effect nf finite primary ferromagnetic re-
gion in the LIM model. This causes the Oberretl theory to over-
estimate the normal attractive force component as a result of
overestimating the trailing end-effect wave and edge-effect flux
along the sides of the motor

It is helpful in understanding the origin of the large normal
forces to attempt a rough calculation of the attractive component
of normal force at zero slip, where it is maximum and the predomin-
ant component of normal force. The magnetic force can be expres-
sed in terms of the normal comnonent of flux density, By.

- 1 2 ) 2
Fn ?H; (By)ave Newtons/meter” . (14)

The airgap flux density is given approximately by
- ) .3 j (wt-kx)
B — Q- 3 1.11 e . (15)

1f one assumes the airgap flux density to be reduced by the end-
eftect by a factor of two when averaged over the length of the

motor, then Equation 14 gives for the normal attractive force,
Fn = 11.7 kN (attractive). (16)

This compares closely with the value of attractive normal force
computed by Elliott for a frequency of 165 Hz equal to 9.35 kile-
anewtons. The Oberretl theory yields a considerably larger value
of normal (predominantly attractive) force near zero slip equal
to approximately 26 kilonewtons, or 2-1/2 times that of Elliott.
This latter is explicable if one assumes the end-effect wave in
the mmf gap region contributes a normal force component equal to
that contributed by the active motor region.

2.1.2.4 LIMRV Linear Inauction Motor

The LIMRV thrust and normal forces were computed for a fixed
input line current of 2400 amps and motor speed of 250 mph (112
m/s). The relevant motor parameters used in the calculations are
listed below. The dimensions defining the motor 'unit cell' are
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given in Figure 10. The longitudinal and transverse mmf gap
lengths were chosen respectively equal to 11.096 and 0.150 meters.
The longitudinal gap length was equal to about 1-1/2 times the
estimated decay length at 165 Hz computed using Equation 1.
Longitudinal harmonics were summed over the range -50<v<50.
Transverse harmonics were suqmed fromn = 1te 5, orn =1, 3, and
S. The choice of maximum longitudinal harmonic number of 50 was
adequate to include the significant components of Fourier current
harmonic since the main current harmonics centered closely about
v = 21 (20 9).

TABLE 2. LIMRV LIM PARAMETERS IN GOERRETL MODEL

Turns per Coil (N) =1

Pole Pitch (rp) = 355 m.

Core Width (2¢c) = .254 m.

Poles (P) = 10

Core Length (ls) = 3.81 m,

Air Gap (g) = .024 m.*

Phases (m) = 3

Slots per Phase (q) = 5§

End Half-filled Slots (eg) = §
Secondary Thickness (b) = .0071 m.
Secondary Resistivity (p) = 0.416x10"
Coil Overhang (h) = .01

Longitudinal MMF Gap (11) = 11.096 m.
Transverse MMF Gap = .150 m.
Longitudinal Periodic Wavelength = 14.906 m.
Transverse Periodic Half-wavelength (L) = .534 m.
Motor Speed (V) = 112 m/s

7 ohm-m.
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2.1.2.5 LIMRV Thrust-Frequency Characteristic

The LIMRV thrust characteristics were computed for pole gap
separations of 38.1 mm and 47.6 mm for frequencies ranging from
160 to 200 Hz. Figure 11 summarizes the results of the calcula-
tions given by the solid curves. The dashed curve presents the
corresponding thrust prediction by the mesh-matrix model for a
pole gap separation of 47.6 mm.

The agreement of the computed hrusts predicted by the
Oberretl and mesh-matrix, models is good for the case of pole gap
separation equal to 47.6 mm. When compared 1ta the corresponding
results for the TLRV thrust (Figure 8), the predicted thrusts are
in considerable better agreement for the LIMRV than for the TLRV
motor. This can probably be attributed to the larger number of
poles and lower operating speed of the LIMRV compared with the
TLRV; i.e., end-effects in the LIMRV are less pronounced than in
the TLRV.

The change of thrust with pole gap separation is governed by
two factors. If end-effects can be neglected (which they cannot
in the present case), then the thrust must increase with reduced
gap separation, since the airgap flux density must increase with
smaller gap separations while holding primary current fixed. The
situation is more complicated with end-effect present, however,
since reducing the gap separation tends to enhance the end-effect
wave. Note that the attenuation constant of the end-effect wave
decreases with reduced gap separations. (Reference 2, P. 26.)
The relative importance of these factors will determine the direc-
tion in which the thrust will vary with change in pole gap
separation. For the thrust to decrease with decrease in gap
separation, the end-effect wnve must dominate the driven wave ir
the airgap region of the motor.

2.1.2.6 LIMRV Normal Force-Frequency Characteristic

The corresponding normal forces computed for the LIMRV are
shown in Figure 12 for the Oberretl model (solid curves) and the
mesh-matrix model (dashed curve). As in the case of the TLRV
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LIM, the Oberretl theory predicts larger normal forces than does
the mesh-matrix theory. The conclusions derived from the study
of the TLRV force characteristics apply here as well; namely,
the Oberretl theory over-estimates the normal forces at low slip
frequencies (below the zero force crossover frequency) due to
its neglect of magnetic end-effects.

A calculation of the attractive component of normal force,
<imilar to that undertaken for the TLRV, is also appropriate here
in order to estimate its magnitude rear zero slip. Using Equation
14 and assuming a line current of 2400 amps, pole gap separation
distance of 47.6 mm, the estimated attractive component of normal
force at zero slip is 6.2 kilonewtons. This compares closely with
the value of attractive force component predicted by the mesh-
matrix model at 165 Hz.
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2.1.3 Summary of Oberretl Theory Applied to TLRV § LIMRV LIMs

A conputer model was developed based on the Oberretl LIM
theorv and applied to estimate the thrust and normal forces in
thoe TLRV and LIMRV LIMs. The computed thrusts were in good agrece-
ment with those given by the mesh-matrix model for the LIMRV but,
were about 20 percent greater than those given by the mesh-matrix
model for the TLRV. The somewhat poorer agreement in the case of
the TLRV LIM is attributed to the fact that end-effect is more
prominant in the TLRV, due to its higher speed and reduced number
of electrical poles.

.

The normal forces computed with the Oberretl program were
consistently greater than those given by the mesh-matrix model at
frequencies below the zero-force-crossover frequency. Estimates
of the normal force at zero slip proved more consistent with that
predicted by the mesh-matrix model than with that predicted by the
Oberretl model. This is expec*ted since the Oberretl model assumes
a continuous ferromagnetic primary region which leads to exces-
sively large flux densities in the trailing end of the LIM at
high motor speeds.

The Oberretl analysis makes no allowance for the finite
length of the primary ferromagnetic region. It therefore neglects
magnetic end-effects and treats onlv end-effects related to a
finite primary current distribution. A similar approach is under-
taken by Yamamura(z) using a Fourier transform method instead of
the Fourier Series representation of Oberretl. Yamamura sums the
stress tensor (or JxB) component, evaluated at the primary sur-
face, over the length of the primary while Oberretl sums the
stress tensor components, evaluated at the secondary surface.
over the length of the motor unit cell. Both methods should, in
principle, give equivalent results. In considering the effect of
finite LIM width, Yamamura uses the results of Bolton's treatment
of cdgc-effects(4) to correct his answer for finite width of the
primary current excitation. The Oberretl approach is different in
that edge-effects are brought into the trecatment in the same man-
ner as are end-effects: namely, by describing the current and

38



field spatial distributions in terms of a series of two-dimensional
spatial harmonics. It is seen that the Oberretl method leads to
unreasonable predictions for the flux densities in the regions
outside of the edges of the motor for the LIM cxample examined in
this report. The Oberretl treatment of edge-effects bears closer
scrutiny in order to assess its implications in the evaluation

of LIM reaction forces.

The Oberretl treatment is limiied to LIMs with even numbers
of poles. This limitation can be traced to the winding distribu-
tion factor, which has been derived for even pole numbers. An
alternate expression for the winding factor is given in this
report, which is believed to correctly describe the mmf distribu-
tion of primaries comprising both even and odd numbers of poles.
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2.2 THE YAMAMURA THEORY OF THT LINEAR INDUCTION MOTOR

2.2.1 The Yamamura LIM Model(z)

The model for the two-dimensional analysis (neglecting edge-
cffects) is shown in Figure i3 with coordinate axes as indicated
in the figure. The model is divided into three recgions along the
v-direction and 1nto threce zones along the x-directioa. Region 1
is the iron core (primary), Regicn 2 is the secondary conductive
sheet, and Region 3 is the air gap separating primary and
secondary.

The assumptions appropriate to the Yamamura LIM model are:

a. The field is uniform in the z-direction and all variables
are independent of z, i.e., d( )/dz=0.

b. The stator windings are approximated by sinusoidally
traveling surface current sheets existing between x=0
and x=L of the stator core surface.

ip =9, ei(ut - kx) (17)

Winding slot perturbations and effect of three-phase

stator current unbalance are ignored.

c. The stator core extends to infinity in both directions
of x-coordinate and has permeability u>>u o Magnetic
end-effects are neglected.

The Yamamura treatment considers spatial variations of current
and flux density only along the x- and y-directions. Since primary
current flows in the z-direction, B and H have x and y components
but no z component. The formulation of the electrodynamic problem
begins with daxwell's equations using a flux density, B, derived
from the vectoer potential, K.

B = UxA (18)
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i

and

The general field equation expressed in terms of the vector poten-
tial then becomes,

2 al ad,
VEA, = o\aE T Vatr (19)

where A has only a z component. V is the velocity of the sccond-
ary relative to the fixed primary (stator), o is the electrical
conductivity of the rail, and u its permeability.

The complete solution of the wave equatlon requires the
boundary conditions to be satisfied at each interface of a given
sone of the LIM model. Writing Maxwell's equations at the boundary
of each region gives the following relations:

d dA

Bix . Bix 0 WD
L v

o M3

I~

- — ——

i A jpaty =+ a ZONE IT (20)

Jy

k=4

where j, is the surface current density defined by Equation (17).

dA,  dAg
Bly = B3y i~ = E;— at y = + a ZONE It (21)
B B dA dA
X . 2 1L 2. L 2 at y = + b ZONE I1 (22)
3 2 3 dy 2 dy
dAy dA,
B3y = BZY E;— = g;— at y =+ b ZONE IT  (23)

The solution for the vector potential in the airgap region
(Region 3) is given by the Fourier transform.

ru 3, coshybcoshg(y-b) + Y sinhybsinhg(y-h)
As(X’Y) - %; o™ . ng
). ~EcoshybsTRRE(a-B) + vsInhybcoshE(a-b) e’ TdL

(24)
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where

v2 = ef e Vu,0,e ¢ wuyo,

and jl is the *ransform of the primary current density.

kx  .EX
/ .Jle'J e dx
L (E*K)L
Jl<e J -1)

=) L+ K (25)

it

The solution of the vector potential transform given by Equation
(24) then leads to the LIM thrust and airgap power per unit width
in the z direction.

L dA;
/ Re ( (x) a—;— (x,a))dx (26)

(o

L
Pairgap J%ﬁeéwA;(x,a)'jl(x%x (27)

A discussion of the use of theorem of residues to evaluate the
vector potential transform is given in the next section.

2.2.1.1 Solution of Vector Potential Integral Using Residue Theorem

The residue theorem states that the integral of an analytic
function around a closed contour is equal to the sum of the
residues.2 Thus if f(z) is an analytic function

w |
f(z) dz = residues (28)
Ini closed EE
contour
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The solution for the residues directly follows once the poles of
f(z) are found within the specified analytic region.

It is helpful to simplify the form of Equation (24) through
the following substitutions:

HaeY
G(¢&,y) = coshybcosh g(y-b) + iiz sinhybsinh £(y-b) (29)
2
USY
i1(&) = ~coshyb sinh§(a-b) + o sinhycoshg(a-b) | (30)
2

Then the airgap vector potential is given by

oo

- SEX -j (E+k)L
Upo € '1 G g!
Ag(xay) = /JleJ i (31)

where the poles of f(2z) correspond to the roots of

(¢ + k) H(E) = 0 (32)

Equating the three principal roots of Equation (16) to &1, £rs
and 53, the residue theorem leads to the following relation for
the vector potential in the airgap in Zone 2(0 < x < L).

&% EX
G(&)»y)e? G(&,,y)e)
:\3()(,)’) = qul 1 1) e + m JiatT (33)
tle=e,
63X
(E5rk)Le)
C(Eg.y)e’’)

az &253 .
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3
2.2.1.2 Solution of H(E)=0 via the Newton-Raphson Method( )

The residues of the vector potential integral described by
Equation (26) are found once the roots of Equation (32) have been
determined. OUne root is simply 51=-k. An infinite number of
additional roots remain, however, corresponding to the solution of
the transcendental equation H(£) = 0. Such an infinite number of
roots is characteristic of wave solutions describing the propaga-
tion of waves within regions with multi-defined boundaries, as for
example, the propagation of electromagnetic and sonic waves inside
cvlinderical waveguides. Yamamura points out (Reference 2, p. 73)
that only two of these infinite number of roots need to be consid-
ered in his mathematical treatment, since the other roots lie far
from the origin in wave number space and describe waves which are
highly attenuated. The justification for this is later born out
in the results of Section 2.1.4, in which the thrust evaluated by
numerically integrating the "exact" thrust function (described by
an infinite number of wave vector roots) is closely equal to the
thrust found in the Yamamura method (in which only the dominant
roots, 51, 52, 53, are considered).

Yamamura suggests the application of the Newton-Raphson
method for evaluating the roots £, and 53. According to this
method, starting with an initial approximation to the root, suc-
cessive iterations are made leading to increasingly better approx-
imations to the final root. Thus, if £' represents the initial
estimate of the root given by the thin sheet approximation, the
Newton-Raphson method states that the new approximation to the
root is obtained by repeated iterations of

H(E

E = &' - —§§5~ (34)

E=EY

Tables 3 and 4 give the roots computed for the TLRV and
LIMRV LIMs according to Newton-Raphson method using the motor
parameters shown below:
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TABLE 3. ROOTS OF H(%) =

EDGE-EFFECTS NEGLECTED.

0 FOR TLRV LIM;
LIM SPEED =

Fﬂgq. 1 "y %3

150 7,012 02+ in. 00 0.21-1262.01
155 -7.012 S7.26+j0.08 0.21-72062.04
160 -7.012 -7.319+50.08 0.22-3262.04
165 S7.012 -7.73+j0.09 6.23-7262.04
170 -7.012 -7.96+i0.10 0.23-7262.04
175 -7.012 -8.20+i0.10 0.24-7262.04
180 -7.012 v -8.33+j0L L 0,25-7262.03
185 7.012 -8.606+j0.11 0.25-3262.04
190 -7.012 -8.90+j0.12 L20-j262.04
195 -7.012 -9.13+j0.13 L27-§262.08
200 -7.012 -9.37+)0.13 0.27-1262.01

TABLE 4. ROOTS OF i(£) = 0 FOR LIMRV LIM; EDGE-
EFFECTS NEGLECTED. LIM SPEED = 250 MPH

Flrigq. F’l o 3

160 -8.840 -8.99+i0.19 0.25-j186.39
165 -8.840 -9.27+j0.20 0.26-j186.39
170 -8.840 -9.55+j0.21 N.27-j186.39
175 -8.840 -9.83+j0,22 0.27-j18¢.39
180 -8.840 -10.11+j0.23 0.28-j)186.359
185 -8.840 -10.39+j0.25 0.29-j186.39
190 -8.840 -10.67+j0.26 0.30-j186.39
195 -8.840 -10.95+)0.27 0.30-7186.39
200 -8.840 -11.23+4j0.29 0.31-3186.39
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TABLE 5. TLRV LIY PARAMETERS

Turas per Coil (N) = 4

Pole Pitch (Tp) = 0.448 m.
Core Width (2¢) = 0.1905 m.
Poles (P) = 5

Core Length (QS) = 2.56 m.
Air Gap (8) = 0.0171 m.
Phases (m) = 3

Slots per Phase (q) = S

End Half-filled Slots (e) = 5
Secondary Thickness (b) = .0066 m,

Secondary Resistivity (p) .416xln'7nhm-m.
TABLE 6. LIMRV LIM PARAMETERS

Turns per Coil (N) = 1

Pole Pitch (Tp) = 355 m.
Core Width (2c) = .254 m.
Poles (P) = 10 _
Core Length (QS) = 3.81 m,
Air Gap (g) = .024 m.
Phases (m) = 3

Slots per Phase (q) =

End Half-filled Slots (€) =

Secondary Thickness (h) = .0071 m.
Secondary Resistivity (p) = 0.416x10 ' ohm-m.

These roots describe the propagation constants of the three
principal waves in Zone II. (See Figure 13,) El corresponds to
the propagation number of the 'driving'wave, £, the propagation
number of the entrance end-effect wave, and €3 the propagation
number of the exit end-effect wave. The large imaginery part of
&3 indicates that the exit end-effect is highly damped for both
LIM examples. It should, thercfore, contribute little to the total
LIM thrust.

2.2.1.3 Calculation of Thrust Residues (Edge-Effects Neglected)

The LIM thrust in the Yamamura model is found by substituting
Equation (24) in Equation (26) and performing the required integra-
tion over the length of the motor. The solution obtained by
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Yamamura for the time-average thrust is given in terms of three

thrust residue functions, Fl’ FZ’ F3.

where

2 -
J -
0”1 Re| jKLG(-k,
ST 'l{Tk)a)J (3%)
P ( j(sz‘k)? ]
2 .
. Eg.]l ReLCZ-l;E~—7———— G(gz,a) (36)
9 D
272 (5,4 <1H/c1e;5=£2
2 [ _j(e:3+k)L( j(ﬁs”‘“‘) ]
u JI Re|z,e l-e G(&.,a)
Fyo= o2 1 3 - 3 (37)

The three thrust components, Fl’ FZ' F3 describe the thrusts
developed by the normal wave, the entrance end-effect wave, and
the exit end-cffect wave.

The values of these thrust components were computed for the
examples of the TLRV and LIMRV LIM's as described by the motor
parameters previocusly given. The computed thrust components for
these two motors are presented in Tables 7 and 8 as a function of
motor excitation frequency. The tables demonstrate the relatively
small magnitude of the exit end-effect thrust component comparea
to the entrance end-effect thrust compoient. The magnitude of
F2 increases sharply with decreasing slip frequency and approaches
the magnitude of F1 at zero slip frequency. The data in Table 8
also illustrates the oscillatory-like characteristics of Fz as a
function of slip frequency. The study of thrus: residues will
be continued in Section 2.2.1 where the effect of finite LIM
width on thrust will be examined.
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TABLE 7.

COMPUTED THRUST "RESIDUES FOR TLRV LIM; EDGE-

EFFECTS NEGLECTED.

LIM SPEED = 300 MPH

Freq. F1 F2 F3 Fx
Hz N. N. N. N.
150 9380 -9750 2.74 - 360
155 14100 -13800 2.74 343
160 7730 -R720 2.74 1020
165 5270 -3670 2.74 1600
170 3990 -1930 2.74 2060
175 3210 - 845 2.74 2370
180 2680 - 179 2.74 2510
185 2310 186 2.74 2490
190 2020 333 2.74 2360
195 1800 329 2.74 2130
200 1620 238 2.74 1860

TABLE 8.

COMPUTED THRUST "RESIDUES" FOR LIMRV LIM; EDGE-

EFFECTS NEGLECTED.

LIM SPEED = 250 MPH

Freq. F1 F2 F3 Fx
Hz N. N. N. N.
160 15700 -14500 2.6 1210
165 11100 -7810 2.6 3320
170 7450 -2860 2.6 4590
175 5510 - 619 2.61 4890
180 4360 + 98. 2.61 4460
185 3590 + B81.6 2.61 3680
190 3060 - 120 2.61 2940
195 2660 - 218 2.61 2440
200 2350 - 165 2.61 | 2190
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2.2.1.4 Thrust Calculation: Theorem of Residues-Versus-Numeri-

cal Integration Methods

Yamamura applies the theorem of residues to evaluate the
magnetic vector potential and subsequently the thrust based on
Equation (26). A similar approach is adopted by Iwamoto® to conm-
pute LIM thrust. However, instead of applying the theorem of
residues to evaluate the vector potential integral, he uses a
numerical integration approach since it is claimed that the latter
approach leads to a ''more accurate analysis of the end-cffect.”
This section will examine the two mathematical methods in terms of
their computed LIM thrusts.

The Iwamoto expression for the thrust given by Equation (32)
of Reference 4 is equivalent to the Yamamura expression for thrust
as found by substituting Equation (24) in (26) and replacing the
current density with its rourier transform as given by Equation
(38). (Note that the Yamamura thrust is computed for one core side
only while the Iwamoto thrust is for both LIM sides.) The
Yamamura expression for thrust can be rewritten as

2 L3
2
F, - 3 1 jf 4 Re[ 51n £+k L) Egé%i%l] d¢ per side (38)

where j = v/~1. The integral can be converted to a series format
by replacing the variable wave number, £, by v times the wave
number increment, 2n/%, where 1 is a periodic length of a "unit
cell” forming the basis for the fundamental wave number. Equation
(38) then takes the form.

32 af sink v%l ‘ ) 2

M 1 51n2- e

F.* 71— 2 ST -] Re ’59{-3 (39)
v -tk

where v is summed over -» to +=. The effect of finite primary
width is not included in the above equation in its present form.

A comparative study was next undertaken to examine the pos-
sible variations in the thrust which result from the application
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of the theorem of residues and numerical integration to evaluate
the thrust integral. There is the question of the possible errors
in the Yamamura thrust, which result from the neglect of the addi-
tional residues omitted in the evaluation of the vector potential
integral. These additional residues neolected by Yamamura are
ascociated with the multiple poles of G(§,a)/H(§) which arise

from *he roots of H({) not located near the origin of the complex
plane. A second question relates to possible inaccuracies in the
numerical integration method resulting from the integration of the
thrust distribution function in the tegion of the singularity.

Table 9 presents the thrusts corputed by the residue method
(Yamamura) and the numerical integration method (Iwamoto) for
the example of the TLRV LIM operating at 300 mph. The value of
the primary current density used in the residue thrust calculation
was determined from

62 NI, _.
- i sinqa/2 _. a'm
34 Tp—— sTha sin=—»— (40)

whern Tp is the slot pitch and a' is the pitch factor equai to
2/3. The remaining parameters associated with the TLRV LIM are
given in Table 5. The expression for the primary current density
distribution used the numerical integration method is given by

. . sin p(¥mge-" ,
16NI /2 m sinvqa/2 ( a-n)° sin971 (41

Jv) = L sinva7Z ~ ; sin(iﬂ§——j)

The slot pitch for this case is equal to

o = motor length | %% . (42)

Two separate sets of thrust calculations were made for the numeri-
cal integration method to study the effect of the size of the wave
vector increment on the thrust result. The numerical summations
were made over a range considered sufficient to encompass the main
spectrum of the thrust distribution function. The numbers in
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TABLE 9.

RESIDUES AND NUMERICAL INTEGRATION METHODS

COMPARATIVE TLRV LIM THRUSTS COMPUTED BY THEOREM OF

Freq. Residue Method(a) Numerical Integration(b)
Hz (Yamamura) N. (Twamoto) N.
x **k
155 343 784(129) 347 (1)
160 1020 714(-30) 1011 (-1)
165 1600 1484 (-7) 1597 ( 0)
170 2060 2241(9) 2663 ( 0)
175 2°70 2255(-95) 2379 ( 0)
180 2510 2464 (-2) 2536 (1)
185 2490 2554(2; 2541 ( 2)
190 2360 2362(0) 2418 ( 2)
195 2130 2146(1) 2202 ( 3)
200 1860 1885(1) 1935 ( 4)
(a) computed with J1 defined by Eauation (35)
(b) computed with Jl(v) defined by Equation (36)
* periodic length & = 33.212m.
LA periodic length ¢ = 132.848m.

LIM

speed = 300 MPH



parentheses specify the percent deviation in the thrust computed
by the two metnods. A glance at the table shows that the agree-
ment is excellent between the residue method and the numerical
summation method for the choice of a unit cell length equal to
132.848m. and reasonably good for the choice of a unit cell length
equal to 33.212m. The results substantiate the equivalence of the
two methods but point up the importance of tiae proper choice of
wave number increment when numerically summing the thrust.

The expression for current density given by Equation (41)
neglects the high-order harmonics associated with the number of
slots per phase belt and number of phase belts per pole. A more
complete description of the harmonic current density spectrum is
given by the expression,

sin p(ugn) sin "(225")
1) = 15E siniv_—%w-"))’ CSATE  san(RE/EY

va m 'E) o

Sin-z— (

(43)

where m is the number phases, and ¢ is the number of half-filled
slots in the winding end turns. Table 10 presents the thrusts
computed using Equations (41) and (43) for the example of the
TLRV LIM. The value of periodic length was ¢ = 132.848 m. for
both sets of calculations. The data shows that the use of the
more complete current density expression given by Equation (43)
rcsults in significantly lower thrust values at low slip frequen-
cies.

Several conclusions can be drawn from the thrust calculations
presented in this section. The residue method and the numerical
intcgration method yield equivalent results if the integration
interval is made sufficiently narrow and the current densities
used for both methods are consistent. Errors which result from
the use of integration intervals, which are too large tend to be
more pronounced at low slip frequencies. When higher-order har-
monics are included in the current density distribution function,
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TABLE 10. COMPARATIVE TLRV LIM THRUSTS COMPUTED USING Jl(v)
DEFINED BY EQUATIONS (41) AND (42). LIM SPEED = 300 MPH

Freq. Fx Fx
Hz (J1: Eaqn 20) (Jy: Eqn 22)
N. N.
155 347 -49.3
160 1011 696
165 1€97 1384
170 2063 1957
175 2379 2368
180 2536 2597
185 2541 2644
190 - 2418 2535
195 2202 2313
200 1935 2027
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the thrust is reduced at low slip frequencies. An advantage in
utilizing the numerical integration technique is the comparative
ease with which arbitrary winding current configurations can be
included in the summation process.

2.2.2 The Yamamura Model With Edge-Effect Correction

The previous discussion of the Yamamura LIM model considered
the restrictive case when edge-effects (due to finite current
sheet width) are assumed absent and the primary and secondary are
infinitely wide. The computed thrusts describe the effect of a
finite primary length on the total developed thrust of the LIM
without regard to the effect of a finite primary width. When the
finite width of the LIM is included in the analysis, the value of
computed thrust is considerably altered. A study of linear in-
duction motors with finiic width primary and secondary structures
by Bolton outlines one method for incorporating into the mathe -
matical treatment the necessary corrections for edge-effects. The
Bolton method consists of deriving a set of equivalent LIM para-
meters, which are used to describe the effective secondary resist-
ivity and magnetizing reactance of the LIM when cdge currents arc
present. The parameters are derived by Bolton und r the assumption
that cnd-cffects are absent and that the flux density immediately
beyond the stator edges is zero. While the above assumptions are
only approximately realized in practice, numerical studies based
on the Bolton analysis have yielded satisfactory results in terms
of actual-versus-computed flux density in the LIM air gap. The
use of the Bolton meihod, therefore, represents a reasonable first-
approximation approach to the edge-effect LIM correction.

2.2.2.1 The Bolton Correction for Finite LIM Width

The finite width of the primary is taken into account in the
Yamamura analysis by utilizing the Bolton Theory5 of linear induc-
tion motors for symmetrically positioned secondaries. The Yamamura
model corrects for edge-effccts by introducing an effective good-
ness factor and secondary current into the calculations. The

latter factors were derived to maintain the same average airgap
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flux density with edge currents as that determined in the absence
of edge current and using the unmodified goodness factor and
secondary current. In the presence of edge-effect, the cffective
goodness factor becomes,

G' = (KR/KX) G (1)
,
where G = uponh/uk'

The effective current density, J!, likewise becomes,

1)
1= Ky ) (45)
where
. i s ) ‘
Kp = 1 Re{(l isG) =3 tanhaa} (46)
KX =1 ¢+ Re{(Gs#j) Gs %5 tanhaa} (47)
1+ s2a?kE A2
Ky, = ¥’y (48)
1 X 2.2

1 + s°C

Yamamura ascribes to the secondary conductivity the same edge-
effect dependence as that assigned to the goodness factor via
Equation (44). This is only valid if the magnetizing reactance
is held fixed and lcads to some confusion when comparing equi-
valent parameters with those of Bolton.

LIM thrust including edge-effects is found by summing Equa-
tions 35-37, using the effective goodness factor G' in place of
G, and the effective current density Ji instead of Jl‘ Care must
be exercised in substituting Ji for J1 since this substitution is
made to "correct" the flux density at the primary resulting from
the edge-effect perturbation. The primary current density remains
constant in the Yamamura model a> givean by Equation 1. The cor-
rection for edge-effects requires that Ji in Equations 19-21 be
replaced with J *J} and not J;°.
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The parameters Kl and KR/KX were computed for the examples of
the TLRV and LIMRVLIM's operating at the respective speeds of 300
and 250 mph. Tables 11 and 12 list the values of these parameters
as a function of driving frequency. The effective secondary con-
ductivities of bothLIM's are reduced by a factor of at least two;
the effective current densities also exhibit a pronounced decrease
with increasing slip frequency.

2.2.2.2 Solution of H(£)=0 via the Newton-Raphson Method; Edge-
Effect Inciuded

The solution of Equation (30) when the edgc-effect is included
in the treatment will be presented for completeness. The procedure
described in Section 2.1.2 for determining the roots via the Newton-
Raphson method was applied to the present calculations. Some dif-
ficulty was experienced in applying this method to the exam:le of
the TLRV LIM at higher slip frequencies, a situation not occurring
in the previous calculation presented in Tables 7 and 8., When an
attempt was made to determine & using as an initial approximation
of root of Equation (30) for small secondary thickness and airgap
distance, the root determined by the Newton-Raphson method con-
verged to &2. The computer program was subsequently modified so
as to set the initial approximation of 53 equal to the value of
the previous computed root determined at a somewhat different
driving frequency. No difficulty was subsequently experienced in
evaluating the roots of H(f) after this modification.

The computed roots are presented in Tables 13 and 14 for the
examples of the TLRV and LIMRV LIMs using the Bolton parameters
given in Tables 11 and 12. For both motors, the iﬁaginary part of
£ is large, indicating that the corresponding "exit" end-effect
waves are hightly damped. The relative effect of the finite LIM
width on £, can be seen by comparing the corresponding roots given
in Tables 5 and 13 for the TLRV LIM and those given Tables 6 and 14
for the LIMRV LIM. The tables show that the main effect of finite
stator width is to increase the imaginary part of £, resulting in
increased damping of the entrance end-effect wave. This is expec-
ted on a phvsical basis since edge-effects produce a corstriction of
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TABLE 11. BOLTON PARAMETERS COMPUTED FOR TLRV LIM.
MOTOR SPEED = 300 MPH

{ .
Freq. ;B K1
Hz X
150 .40 1.0
155 .30 .99
160 .38 .95
165 .37 .91
170 .35 .87
175 .33 .83
180 .31 79
185 .30 76
190 .29 73
195 .28 71
200 .27 69

TABLE 12. BOLTON PARAMETERS COMPUTED FOR LIMRV
LIM. MOTOR SPEED = 250 MPH

Fre EB K
e Ky 1
160 .57 .99
165 .55 .96
170 .52 .91
175 .49 .87
180 .46 .83
185 .44 .80
190 .42 .77
195 .41 .75
200 .39 .79
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TABLE 13. ROOTS OF H(&)=( FOR TLRV LIM; PDCGE-EVFECTS
INCLUDED. LIM SPEED = 300 MPH

Freq. €4 £y &3
Hz
150 -7.012 -7.02+j0.18 0.40-j252.63
155 " -7.25+j0.20 0.42-j252.40
160 " -7.48+30.22 0.44-3251.86
165 " -7.71+4j0.25 0.48-j251.11
170 " -7.94+30.27 0.52-j250.27
175 " -8.17+30.31 0.56-j249.40
180 " -8.40+j0.34 0.60-j248.55
185 " -8.63+)0.37 0.65-)247.74
190 " -8.86+j0.41 0.69-7246.98
195 " -9.09+j0.45 0.74-;246.29
L}OO " -9.32+j0.48 0.78-j245.64

TABLE 14. ROOTS OF H(£)=0 FOR TLRV LIM: EDGE-EFFECTS
INCLUDED. LIM SPEED = 250 MPH

Fﬁgq. &1 €, &3

150 -8.840 -8.41+j0.29 0.36-j182.64
155 " -8.69+j0.30 0.37-j182.84
160 " -8.97+30.32 0.38-j182.83
165 " -9.25+j0.35 0.40-j182.65
170 " -9.53+j0.39 0.43-j182.35
175 " -9.80+30.43 0.46-j182.00
180 " -10.08+j0.47 0.49-j184.64
185 " -10.35+j0.52 0.52-j181.29
190 " -10.63+j0.56 0.55-j180.96
195 " -10.90+j0.61 0.58-j180.65
200 " -11.17+j0.66 0.61-j180.37
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secondary current flow near the stator edges and an increase in
the secondary resistance; this results in more rapid attenuation
in the end-effect wave distance.

2.2.2.3 Yamamura LIM Thrust With Edge-Effect Included

The thrust was next computed for the LIM models based on the
TLRV and LIMRV LIM's and including the corrections for the finite
width of the primary. Tables 15 and 16 give the magnitudes of the
thrust components, Fl(normal wave) , Fz(entrance end-effect wave),
F3(Exit end-effect wave) for the TLRV and LIMRV LIM's driven at
different line frequencies. The F3 thrust component is negligibly
small compared with Fl and F2 and can be discarded with little
error in the final thrust result. This leads to an appreciable
reduction in computer time, since it eliminates the length calcu-
lation of one of the two roots of H(§) = 0.

A comparison of thrusts computed by the Yamamura, Oberretl,
and mesh-matrix models is given in Figures 15 and 16 for the TLRV
§ LIMRV LIM's. The Yamamura model gives consistently larger
thrusts than the mesh-matrix model. In general, the Yamamura
model gave thrusts which agreed better with the Oberretl thrust
than with the mesh-matrix thrusts. Below the frequency of 170 HZ,
the Yamamura and Oberretl models predicted identical thrusts for
the TLRV LIM.

The thrust characteristics shown in Figures 14 and 15 are
sensitive to the end-effect and the manner in which it is treated
in the Yamamura, Oberretl, and mesh-matrix theories. Since the
Yamamura model uses the Bolton factor to compensate for edge-
effect, some error is expected since the Bolton factor neglects
end-effect in its derivation.

It is worthwile to review certain aspects of the different
LIM models in the light of the results previously presented. The
Yamamura model considers the fundamental mmf harmonic only and
neglects higher-order mmf components. The inclusion of higher-
order mmf harmonics in the Yamamura calculatiocn would likely re-
sult in some reduction in computed thrust due to the negatively
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TABLE 15.

PREDICTED THRUST FOR TLRV LIM USING YAMAMURA THEORY
WITH EDGE-EFFECTS INCLUDED,

MOTOK SPEED = 300 MPH

I = 530A./Fh.
b = .0066 M,
gap = .017M

MOTOR SPEED = 250 MPH

1 = 1200A/Ph.
b = .0071M
gap = .024M

Freq. Fi Fj F3 Fx
Hz N. N. N. N.
150 3910 -4460 2.90 -548
155§ 24300 -23300 2.87 987
140 16900 -14500 2.78 2420
165 12300 -8670 2.67 3620
170 9570 -5050 2.56 4520
175 7830 -2750 2.46 5080
i80 6620 -1310 2.36 5310
185 5740 - 476 2.28 5270
190 5070 - 58.8 2.21 5010
195 4540 86.4 2.15 4630
200 4110 73.9 2.10 4190
TABLE 16. PREDICTED THRUST FOR LIMRV LIM USING YAMAMURA THEORY

WITH EDGE-EFFECTS INCLUDED.

Freq. Fi F2 F3 Fy
Hz N. N. N. N.
160 12700 -10800 2.68 1910
165 14800 -10000 2.63 4770
170 11500 -5010 2.56 6470
175 9000 -2070 2.47 6940
180 7340 - 804 2.39 6540
185 6180 - 431 2.32 5750
190 5340 - 378 2.26 4960
195 4690 - 356 2.20 4340
200 4190 - 286 2.15 3906
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propagating S5-th harmonic wave; it is unlikely, however, that the
thrust reduction would be sufficient to bring the Yamamura thrust
into agreement with the Elliott result. Becth Yamamura and Elliott
models compensate for edge-effects by modifying the values of the
secondary resistivity and magnetizing reactance according to the
method of Bolton. In deriving the appropriate factors to modify
the secondary resistivity and magnetizing reactance, Bolton
neglects end-effects. A glance at Tables 15 and 16 shows that
end-effects have a dominant effect at low slip frequencies and
couid not be neglected when computing thrust. The possible error
introduced into the result by neglecting end-effects in calculat-
ing Bolton factors and ultimately thrust remains unknown.

The Yamamura model described in this report uses the same
value of secondary resistivity for both normal and end-effect
secondary currcnt waves. It is questionable whether the same
current flow constriction exists for the end-effect current wave
and whether its effective resistivity should be the same as that
of the normal wave. The Oberretl treatment avoids the above
complication by describing the current distribution as a multiple-
harmonic Fourier representation and the secondary resistivity as
the actual secondary resistivity.
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2.2.3 Summary of Yamamura Theory Applied to TLRV § LIMRV LIMs

The Yamamura theory of linear induction motors was used to
compute the thrust developed by the TLRV and LIMRV LIMs. The
computer study shows that the Yamamura theory predicts LIM thrusts
in reasonable agreement with the Oberretl and Elliott predictions.
The Yamamura LIM thrusts tend to agree more closely with the
Oberretl predictions than with those of Elliott.

The possible reasons for the predicted thrust discrepancies
have been considered. The Yamamura model describes the primary
mmf by a single spatial harmonic and neglects the effect of the
higher-order mmf components. A computer study of the effect of
these additional harmonics indicates that, for the example of the
TLRV LIM, the additional mmf harmonics reduce LIM thrust consider-
ably in the region of zero slip frequesncy and have a small effect
on LIM thrust at higiier slip frequencics. In the Yamamura model,
edge-effects (current) are compensated by modifying the values of
secondary resistivity and magnetizing reactance according to the
theory by Bolton. The ultimate effect on LIM thrust of neglecting
end-effects in the derivation of the Bolton factor is question-
able, as is the effect of using a common value of effective
secondary resistivity for both normal and end-effect secondary
current waves.

The Yamamura LIM model assumes a continuous primary ferro-
magnetic region and neglects the magnetic end-effects associated
with the ferromagnetic boundaries. Yamamura states that the above
assumption results in negligible error in the LIM output charac-
teristics, since the important boundary conditions at the entrance
end of the motor are little affected by the highly damped exit
end-effect wave. If the above condition is correct, then other
explanations must be found to account for the discrepancies
between the Yamamura results and those of the mesh-matrix which
takes into account the finite length of the stator core.
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The computer time required to run the Yamamura computer pro-
gram is comparable witnh that required to run the Oberretl compu-
ter program, namely about 40-60 seconds for 10 case runs. This
is approximately an order of magnitude less than the time re-
quired to run the same number of cases using the mesh-matrix
computer program.
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~ 3 THE MOSEBACH THEORY OF THE LINEAR INDUCTION MOTOR
2.3.1 The Mosebach LIM Model(3)

Because exact solutions of the field equations for actual
LIMs are impossible, one must resort either to apgproximate solu-
tions of real structures, or to exact solutions o idealized
models of real structures. The Mosebach treatment takes the
latter approach. It replaces the real motor, shown in Figure 16a,
with an idealiz.a model as illustrated in Figure 16b. The stator
winding current is represented in the model by a surface current
density sheet propagating in the x-direction. The secondary is
described by a region with conductivity and dimensions, equivalent
to that of the real secondary.

The coordinates used in the model description are shown in
Figure 16b. The origin is positioned at the center of the motor
and inside the secondary. The secondary moves in the x-direction
relative to the fixed primaryv. The y-axis denotes the direction
normal to the motor surface and the z-axis denotes the direction
along the transverse axis of the motor.

The LIM model simulates the fringing magnitude flux of the
real motor by means of the linear gap function of 51 degrees shown
in Figure 16b. In the idealized model, airgap flux is assumed to
be restricted to the y-direction in the absence of secondary.
Conformal mapping studies of the flux distribution of the real
motor (comprising 90 degree air-iron interfaces at motor ends)
without secondary reveal that the y-directed flux of the real
motor is closely approximated by that of the idealized model at
positions along the x-axis of the motor. 4

Two versions of the above model are considered by Mcsebach
and referred to as the one-dimensional LIM model and the two-
dimensional LIM model. The one-dimensiciial model treéats the
fringing fields at the motor ends only, by the use of the linear
gap function. The ferromagnetic primary is assumed to be con-
tinuous in the transverse direction. The two-dimensional model
uses the linear gap function to describe the varying magnetic
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FIGURE 16a. SKETCH OF REAL LIM
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FIGURE 16b. EQUIVALENT MOSEBACH LIM MODEL (SIDE VIEW)
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permeance at both the ends and the sides of the motor. Thus, it
should provide a better description of magnetic boundary effects
than the one-dimensional model. However, this is partly offset by
the increased computer time required in the two-dimensional com-
puter analysis. The one-dimensional computer program is used ex-
clusively in this report for computer studies based on the Mosebach
LIM model.

End views of the one and two-dimensional models are shown in
Figures 17a and 17b. The primary and secondary edges are located
at transverse positions z, and 9 respectively. The secondary

half-thickness is Y1 and the core-to-core separation is Zy,q,

The following assumptions are applicable to both versions of
the Mosebach model:

a. The permeability of the ferromagnetic primary is infinite.
The permeability of the secondary is equal to free-space permea-
bility.

b. Primary and secondary currents are confined to the x-2z

plane.

c. Air-gap and secordary thickness are small compared with
the pole pitch., Y-directed flux components are assumed uniform in
both the airgap and the secondary.

d. Primary current density (surface) varies with distance
(x) and time (t) according to exp (jkx + wt).

The following additional assumpticns are applicable to the
one-dimensional model:

e. Secondary currents inside the primary region (-zl<z<zl)
flow in the z direction.

f. Secondary currents outside the primary region flow in the
x-direction. Current density in the secondary overhang (sidebar)
is a uniform function of :z.
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2.3.1.1 Magnetic Induction Equation: Two-Dimensional Model

The solution for the eleccromagnetic fields in the region
between the two sides of the primary follows from Ampere's law
with displacement current neglected and Faraday's law.. Thus,

VxH=7J
VxE= -2 (49)

where G is the secondary current density. For an isotropic medium
moving with velocity V, Ohm's law gives,

J=0 (E+VxB), (50,

Continuity of current inside the secondary requires,
VI=0 (51)

Since assumption c requires the normal field to be independent
of y, it .. convenient to apply Ampere's law in integral form
around the contour shown in Figure 18. Thus,

H(x*Ax)-yz(x+Ax) - H(x)-yz(x) = Kz Ax + Jz-Ax "1

or

é% (Byyz) B uo-IKz * Jzyl) (52)

+ . .
where Kz and Jz are the primary surface current density and second-
ary (volume) current density, respectively, in the z-direction.

L I . . . . .
In the Mosebach notation, primary surface current density is given
by Az instead of Kz.
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FIGURE 18. CONTOUR INTEGRATION USED IN DERIVATION
OF MAGNETIC INDUCTION EQUATION

For the y field component, Faraday's law gives,

aE aE aB
X . 2. . X
oz ax at (53)

where the electric field components E , E_, given by Equation (50)
take the form,

tm

[ ]
Q|-

C

[32]
(]
Q-

Jz - v By,

Here v is the speed of the secondary in the x direction relative

to the motor. Substituting E_, E in Equation (53) gives,

z

an/ax - alx/az - oléBy/at + a/ax (v By)] = (54)

Jx can be eliminated using Equation (51) after taking the partial
derivative of Equation (54) with respect to Xx.
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Jx can be eliminated using Equation (51) after taking the partial
derivative of Equation (54) with respect to x.

2, 2
a” T a“Jd (GB
g RN ))=
S - + v B 0 (55)
ax- azi ax \ut ax y
1t Jz is calculated from Equation (52), Equation (55) can be re-
written in the form expressing the field By, air-gap yz(x), and
primary current density Kz in terms of the independent variables,

x, z, and t.

2 2
ol3 3 aB aB a KZ a KZ

a a Y y
——— B - —_ + = +
3 (Byyz) * axazz ( yYZ) Hh%Y1 ax ot " ax Mo ax? az?

ax

(56)

A derivation of the corresponding equation for the one-dimensional
model is given below.

2.3.1.2 Magnetic Induction Equation: One-Dimensional Mcdel

The one-dimensional model assumes secondary currents flow in
rectangular shaped paths as illustrated in Figure 19a. Inside the
primary region, secondary currents flow in the z-direction; outside
the primary region, secondary currents flow in the x-direction.

No flux generated by the edge currents couples to the primary
currents. The field inside the primary is constant in amplitude
and phase over the width of the primary.

Faraday's Law of Induction, Equation (49) written in integral
form, together with Ohm's law for the moving secondary, requires
that for a contour C in the secondary enclosing a surface S,

1 f7.07 .0 [ .= Ty T.AT a
E_él.'"d" ‘Tt_/;B'" da -[Vx B-dg 0 . (57)

This general law is now applied to a current path having incre-
mental length Ax in the x direction, but finite width spanning
half of the secondary (Figure 19b).
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Z1 Zl

]
1 1 e
6/ J, (x +Ax)dz - 5/ J, (x)dz 5, Ax
o 0

o
- ) .. a . 8
v J [By(x + b5 By(x)] dz - o3 J[ B, ax dz 0o (58)

o )

Here, the conductivity of the edges of the secondary 1is designated
2s o, as distinguished from o describing the central region of the

secondary.

Consistent with the one-dimensional model is the assumption
that J, and B_ in the region -z,<z<z, are independent of = so that
w

in the limit Ax-~0, Faraday's law requires that

z, a.l J B, 1B,
1 Tz o x o, <_)_ . __2> =0 . (59)
s

Just as an integral form of Faraday's law is used to bring
the edge effects into the one-Jdimensional model, so also is an
integral form of the current continuity equation, Equation (51),
now brought in. With the help of the incremental section of
secondary shown in Figure 19c, the continuity condition requires
that

dS [.&(x + AX) - .&(x)] = .E X (60)

and in the linmit it follows that

JZ = dS a—x'° (61;"

whore the thickness of the edge is defined as ds =2, - 2.

After taking the derivative with respect to X of Equation

(59), use can be made of Equation (61) to eliminate J, and it
follows that
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P m e =

with the understanding that Bv and K_ are independent of =, Equa-
tion (52) can be introduced into this expression to eliminate J.
«nd give Mosebach's expression for the magnetic flux density as i

tunction of the primary currents,

3 c N n aB aBV
! , / - . L . 24- . 4 3
lﬁ? (By}z) S z,0.d_ ax (Byyl) Y10 ax [at Vax (6>

1 s s
T S
o ‘XZ hlosds z

The above equation d - termines he field distr.bution in the one-
dimensional Mosehach model.

2.3.1.3 Solution of Magnetic Induction Equation: Two-Dimensional
Model

The Mosebach treatment of the two-dimensional LIM model con
<ists of expanding the spatial distributions of the airgap flux
density By(x,:), primary current density Kz(x,:), and airgap
function yz(x,z) along both the longitudinal (x) and transverse
1-) axes of the LIM model. For ti - purpose, it is convenient to
Jefine a 'motor unit cell' having a length £ in the x direction
and width 2 z, in the z direction. Inside the cell region, B
{x,2Y, Kz(x,z). yz(x,z) are each described by a two-dimensional
Four.er series, each term in the series being characterized by a
wavc propagation vector, k, piven hy

+ n 2n ~ nmn
k=i T 17y, (64)
kK= Tx na-+ Yz mb (65)
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where n, m are the harmonic orders associated with the x,z wave
vector components. In practice, the urit cell length £ is set

approximately equal to a multiple of the primary wirding length,
1f KP denotes some integer greater th m univv, then ¢ = KP-P1_,

where P is the number of (mmf) poles 1n the motor. “he width of
the unit cell, 2 z,, can be chosen equal to "%« adary width.
The two-dimensional function distributions i .+ he form,
j (wt + nax v "~ .
By(x,2,t) = Re Z%Bnme“w ’ (66)
K, (x,z,t) = Re ST K el (08 7 18T mbz) (67)
nm
y,(x,2,t) :EE:? Y)‘uej(xax + ubz) . (68)
Aw

The harmonic anmplitudes K . and qu are found by taking the Fourier
transforms o’ the known spatial distributions of primary current
and airgap spacing i1espectively.

The substitution of Equations (66), (67), (68) in (56) yields
the following equation relating the amplitude cofficients B
and qu.

nm’ Knm’

< P 1323 - 2,.2 jwt+(n+r)ax+(m+u)bz
‘%EEEEZ; { j(n+2r)~a j(nex)a(m+u) b ] YuA Bnme ( )
nu

oy $ S Gna) (Gu ¢ jvnadBay J (wt + max + @HZ (g
nm

nm

+
Mosebach uses P, to denote number of pole pairs.

77



Transforming the summation indices n, m, in Equation (69).
m+ u>m
ne+Aizyn

and collecting coefficient of terms with identical space and time
dependences,

\ sy
- n 20 ey nm
ji:i YuABm'u.n-l t)r o \2_ (DT 7 Bam I¥g

2n \ ™
KPPt
KoP EE p/p
(70)
where r is the magnetic Reynolds number
MwoYy .
T —3 (71)
n
(Tp) z
and Sy ° the harmonic slip given by
- {2 n\ .
Sp = 1 (rp._(l s) . (72)

P

The quantity Y20 in Equation (70) de: :tes the half-spacing between
primary cores (see Figure 17b). Equation (70) describes a set of
linear, complex equations relating the unknown flux density
amplitudes, Bnm' In matrix notation, the equation takes the form,
(1v] + 5 (R1)-B =K (73)
\
[Y] is a real, quadratic matrix and is independent of slip. [R] is

a real, diagonal matrix with slip-dependent elements. The solution
of Squation (73) is obtained by setting,
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= |
n

ﬁw.
+
[
[~ -]

K=K +3jK

and solving for the real and imaginery parts of B.

A L H R

r [y + (RIlY DR)
5 - Ri + Fr'(R]
i T Yr

2.3.1.4 Solutions of Magnetic Induction Equation: One-Dimensional
Model

The procedure for solving the one-dimensional field equation
is identical in principle to that used in the solution of the two-
dimensional equation. In the one-dimensional model, the airgap
field By, primary current dernsity X_, and airgap spacing function

y, are expanded in Fourier series along the x axis.

By(x’t) = Re }E Bnej(wt + nax) ("4)
n=-w
Kz(x,t) = Re z Knej (wt + nax) (75)
n=-m
v = 3 el N (76;
\=-w

Substituting the above equations in Equation (63) gives,
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K=K +jK

and solving for the real and imaginery parts of B.

e Ul g

r Y] + Ry DIR]
- K; + B."[R]
1 |Y|

2.3.1.4 Solutions of Magnetic Induction Equation: One-Dimensional
Model

The procedure for solving the one-dimensional field equation
is identical in principle to that used in the solution of the two-
dimensional equation. In the one-dimensional model, the airgap
field By, primary current density Kz, and airgap spacing function
y, are expanded in Fourier series along the x axis.

B,(x,t) = Re EE B e (4t * max) (74)
n=-wo
K, (x,t) = Re z kel (vt * nax) (75)
n=-w
yz(x) = z yxej(kax) (76)
AR -

Substituting the above equations in Equation (63) gives,
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> RN (ST TN (A S

*z by 0wy na (1 + v:a) Bnej [“’t * "Jx]

n

- - uoE [(na)z R %d_] Knej wt + nax] (77)

n s“1"s

Transforming the summation indice n in the first summation, n+i-+n,
and collecting coefficients with common space and time dependence,

r' y, B u
*n 71 °n - . i 0O
ZY/\ Bi-a *d ——2__ Jma K (78)

where rﬁ is the magnetic Reynolds number associated with the
fundamental spatial harmonic in the 'motor unit cell’', i.e.,

Y _ow
! = o

n Vi [¢]
14 ————— (79)
: ( * o dsan)

szl

and Sh is as defined by Equation (72). In matrix form, the above
equation becomes,

[Y] + j[R) ‘B =K (80)

For a system comprising the set of harmonics -2 < n < 2, [R] and
[Y] take on the form,

BT o] R TT
¥ CHOHEN R D DD
" R
0 0 011 1 0 Y Y Y, Yy Y

— 4T Y RN T

g e I L e el Y21 M 1Yo
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where r' is given by Equatisr (79) and the matrix elements Y, are
determined from

/2
Y, = j[ yz(x)e°3xaxdx
-L/2
B and K are complex vectors
B_, K_,]
B.1 K
B=|0 K=1o0
By Ky
B K
|2 |2 ]

The solution for the real and imaginery parts of B are given by

(81)

(82)

The current density harmonic Kn is found by taking the Fourier
transform of the primary current distribution over the length 2 of
the unit cell. In practice, it is desirable to compute the current
density harmonics for each phase winding since the "phase harmonics"
are required for the subsequent constant voltage analysis. Thus
if Kﬁ denotes the nth harmonic of the kth phase,

L/2
Rk - %:/f/ £,(x) KK (x)e In8%ax (83)
L1312

where fk(x) is a 'slot distribution function' which defines the
occupancy of a given stator slop, i.e.,
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fk(x) = 0 slot unoccupied by kth phase winding

fk(x) = 1 slot occupied by kth phase winding; reference
phase equals zero

fk(x) = -] slot occupied by kth phase winding; reference
phase equals 180 degrees.

In closed form, K: can be expressed as,

-k o .7k
Kn (ank ank) K (84)
where Kk is the primary current density amplitude

L %ﬂﬂ ik (85)
P

Fal!

In a similar mainer, it is possible to express the nth harmonic of
fiux density associated with the kth primary phase as,

=k . ¥ k kY gk
B.* - an Y70 (cn - jd ) K (86)
where the complex coefficient cﬁ - jdz determines the amplitude
k

and phase of Bn'

2.3.1.5 Constant Voltage Source

The solution for the case of a LIM with constant voltage ex-
citation requires the calculation of currents flowing in each phase
winding produced by the fixed input voitage excitation. Each phase
current is uniquely determined once the input impedance of the
given phase winding is known.

The equation for the voltage drop in the kth phase winding of
the LIM is,

(87)

k k -vk), (K k
v (rl * Jxl) 1=+ vinduced.
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The first term on the right-hand side includes the winding resist-
ance and primary leakage reactance. The second term describes the
voltage induced by the air-gap field as a result of currents flow-
ing in the different phase windings of the motor. The induced
voltage can be computed by integrating the electric field over the
length of the conductors in the given phase. For the nth harmonic
flux wave,

L = —= (88)

Expressing Bn in terms of phase currents I using Equations (85)
and (86},

3INg z 9 3
E = - J (C - Jd ) (89)
n na na VZO p n

The phase voltage found by integrating the electric field E_(x,t},
Ez(x,t) =25nej (wt + nax) (90)

over all conductors of the k'th phase is,

1s/2
vK' = 2z, E, (x,t) 3Nq £k (x)dx
~2s/2 P
u)]J 22z 2 [} ]
"J 1(3_&9)1211(2(‘: -Jd)(a:*jb:‘\)
)’20 p n .

(91)

The voltages in a three-phase system can be written in the
form,
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LA b 3 | a2t Z23 h (92)
R
P [ Rt it s I %
(" 31 | “32 | “33 (1 /
SR
| IRI + Jxl
N ISR S

Identifying the impedance elements of the above matrix with
Equation (91) gives for the mutual impedance between the k and

k'th phases.
2z 2 - (ck - jdk)-(ak' . 'bk'\
" . WHocf1s [3Ng n n n b,
MTTELIE Ry el € 2 (93)
8" Y0 \P/ n=-w n

2.3.1.6 LIM Output Parameters

The electromagnetic characteristics of a LIM can be determined
once the air-gap flux density and secondary current density have
been found for the specified primary current density excitation.
The nth harmonic of the second current density J(n) is related to
the nth harmonic of air-gap flux density B(n),*

ows

J(n) = —= B(n) (94)

an

The thrust Fx is found by integrating the force density over the
volume of the secondary.

Fp = - /1/2 Re(Jz n;) dv (95)
v

. . . -
For clarity, the harmonic order is indicated in the parenthesis
rather than subscripts as previously given.
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Substituting the Fourier series expansions for J,, By in the above
equation and integrating,

Fe =9 Fy(n) = 22,7 K PT ) (B(n)c*(n) + B (mJ(m) (96)
n n

Mechanical power P is equal to the product of thrust and

m’
motor speed. It can also be expressed as the summation of the

products of thrust harmonics and speed harmonics. Since the nth
harmonic wave has a speed v(n)-(l-sn)w/na, the mechanical power is

P -zpm(n) =2Fx(n) (I-s) 377 (97)
n n

The air-gap power which is the real power tranferred to the
secondary, is given by

Pag .z Pagim) z F (n) 3= | (98)
n

n

The secondary power loss equal to the heating losses in the
secondary is

s
Psec '2 Peec(M = z Fy(m) an_n . (99)
n

n

The form which these harmonic spectra takes is illustrated in
Figure 6 for the TLRV orcrating at a speed of 300 MPH,

2.3.2 Mosebach One-Dimensional Computer Program

Choice of Fourier Cell Length £ and Maximum Harmonic Order
NMAX

The Mosebach theory uses Fourier series expansions to describe
the spatial distributions of airgap flux density and airgap func-
tion yz(x). These series are expanded on the basis of a periodic
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length in the x direction equal approximately to some multiple of
the motor (primary) length. Thus, & = KP P rp where KP is some
integer greater than unity. The criteria for chcosing & is de-
termined by the requirement that the flux density at the exit end
of the motor cell be sufficiently attenuated so as to have neg-
ligible effect on the boundary conditions at the entrance end of
the motor cell. A choice of cell (periodicity) length, which
results in the flux being attenuated to one percent of its maximum
value, is considered adequate. If £ is chosen larger than necessary
to satisty the above condition, the number of harmonics required to
describe the Fourier distribution becomes unduly large leading to
excessively high computing times.

The dependence of LIM motor characteristics on the choice of
KP is illustrated in the table below in which LIM thrust, airgap
power, and secondary power loss are computed for the TLRV LIM for
KP = 2, 4, and 8. Motor conditions correspond to primary phase
current of 530 amperes, excitation frequency of 165 Hertz, and
speed equal to 300 mph. In order to include the same relative
range of harmonics in the spectral distribution, the maximum
harmonic order NMAX, was increased roughly proportional to KP.
Sketches showing the airgap functions for the different values of
KP are given in Figure 20.

The results given in Table 17 show that airgap power and
secondary power loss are relatively insensitive to KP (cell length)
while the thrust shows a functional dependence when KP varies from
2 to 4. For KP greater than 4, the motor output parameters vary
only slightly, with no change being observed in LIM thrust. For
all examples considered in Table 17, the cell length is sufficient
to insure attenuation of the airgap flux density to one percent of
maximum value.

NMAX specifies the range of harmonic orders, -NMAX < n ¢ NMAX,
required to describe the field and current distributions in the
motor. Experience has shown that a value of NMAX equal to three
times the harmonic order of peak flux density amplitude is general-
ly adequate. Tablc 18 gives the TLRV LIM output parameters computed
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TABLE 17.

TLRV OUTPUT PARAMETERS VERSUS NORMALIZED

FOURTIER CELL LENGTH
KP NMAX THRUST AIRGAP POWER SECONDARY
(N/side) (KW/side) PUWER LOSS
(KW/side)
2 15 1569 668.66 458.16
4 25 1663 673.97 450.94
8 50 1663 670.30 449.21
TABLE 18. TLRV OUTPUT PARAMETERS VERSUS MAXIMUM
HARMONIC ORDER
NMAX THRUST AIRGAP POWER SECONDARY
(N/side) (KW/side) POWER LOSS
(KW/side)
8 4593 801.8 185.7
10 4550 800.6 190.3
16 4497 796.9 193.7
24 4481 797.1 196.1
S0 4450 797.2 200.3

for five NMAX values for the LIM operated at 530 amperes/phase, an
excitation frequency of 200 Hertz, and speed of 300 mph. With KP
equal to two, the peak field and current harmonics corresponded to
the fifth harmonic order. Table 18 shows that an increase in NMAX
from 16 to 50 results in only a onc percent change in thrust and

an almost insignificant change in airgap power. The dependence of
secondary power loss on NMAX is somewhat greater, due to the fact
that a large number of harmonics is necessary to describe the sharp
peak in secondary current which normally exists at the trailing
edge of the LIM at high speeds.

The computed spectral distributions of flux density, thrust,
airgap power, and secondary power are shown in Figure 21 for the
motor conditions applicable to Table 18. The form of the spectral
distribution suggests that little loss in accuracy results from
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restricting the harmonic orders to negative values. In its present
form, the Mosebach computer program sums over equal numbers of
positive and negative harmonic orders so that some modification of
the program to limit the region of harmonic summation would seem
worthwhile.

2.3.3 Boundary-Effect Considerations

2.3.3.1 Magnetic End-Effect

The effect of the finite length of primary iron (core) on LIM
performance or so-called magnetic end-effect, can be important at
high motor speels and low slip-frequencies. The magnetic end-
effect is examined in this section using the example of the TLRV
operating at rated speed and stator current excitation. Two LIM
models are considered: the first has a finite length primary iron
(Model A) and the second has continuous primary iron (Model B).
The differance in LIM characteristics of the two models describes
the effect of the limited iron length on motor performance.

The TLRV output characteristics are computed at rated sr--d
(300 mph) and stater current (530 amperesy/phase) as a function of
vxcitation frequency. Motor parameters required for the calcula-
tions ure summarized in Table 20. To insure convergence of the
Fourier series for the case of the continuois primary iron (Model
B), it is necessary to increase the length of the periodic cell to
about eight times the length of the primary windirg. The computer
parameters used in the calculations are given below:

MODEL KP NMAX
A 2 15
B 8 50

Figure 22 presents the LIM thrust for Models A and B as a
function of stator excitation frequency. The magnetic end-effect
as represented by the difference in the curves becomes quite small
above 200 Hz but has a large effect at lower frequencies. Thus, at
a frequency of 165 Hz corresponding to a slip of 0.0928, LIM thrust
is reduced approximately fifty percent by magn-tic end-effect.
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Figure 23 presents the airgap power pag’ mechanical power Pm,

and secondary power P predicted by the Mosebach theory for

finite length and coni?ﬁuous primary iron models. Airgap power is
almost unaffected by the length of the primary iron core, in
contrast to the mechanical and secondary powers which are consid-
erably affected by the length of the primary iron. This suggests
that magnetic end-effects do not affect the total real power to

the motor but, alter the division of this power into usable mechan-

ical work and secondary power loss (heating).

The power factor was also computed for the same set of condi-
tions applicable to Figures 22 and 23. The change in power factor
with magnetic end-effect included was relatively small, and typi-
cally increased four percent at a slip of .0928. The results
suggest that LIM real and reactive power components are insensitive
to the extention of iron beyond the region of the primary winding.

The airgap flux density along the longitudinal (x) axis of
the motor is insensitive to magnetic end-effect within the primary
(-x1 <x < xl) but can be strongly dependent on magnetic end-effect
in the region outside the primary (x > |xl|). Figure 24 shows the
flux density amplitude computed for the TLRV at 300 mph (530
amperes/phase, 165 Hz) for continuous primary ferromagnetic region
and a finite ferromagnetic region given by the actual core size.
The trailing flux density in the exit end of the LIM attenuates
exponentially with distance in both cases. This is illustrated in
Figure 25 in which the log of the flux density amplitude is plotted
against distance along the x axis. The linear slopes of these flux
attenuation characteristics yield the attenuation constants given
below. Also shown is the corresponding attenuation constant pre-
dicted by the Yamamura theory2 for the case of continuous primary
iron.

Mosebach Yamamura
Model Model
Continuous iron 0.211m'1 0.25m°}
primary
Finite iron 1.61m"1 .
primary
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2.3.3.2 Transverse Edge-Effect: Mosebach Versus Bolton Treatments

The Mosebach treatment of the transverse edge-effect differs
considerably from the approach used by Bolton. In the Mosebach
one-dimensional model, the actual secondary overhang is replaced
by ficticious sidebars which serve to conduct all the longitudinal-
ly directed currents flowing in the secondary. The secondary
current is also assumed to flow in rectangrularly-shaped patterns
(Figure 19a. These flow patterns remain independent of frequency
so that the mutual coupling (inductance) between primary and
secondary is independent of frequency. Changes in the secondary
impedance (as seen by the primary) are then identified with changes
in the secondary leakage inductance and secondary resistance,
rather than with changes in the secondary magnetizing inductance
and secondary resistance. In the Bolton model, the finite second -
ary width does not cause any restriction in the secondary current
paths. Secondary currents flow in patterns described by Bolton as
'television screen' or 'distorted television screen’ shaped pat-
terns. These flow patterns change with slip frequency in order to
accommodate flow paths of minimum secondary reactive impedance.

In terms of equivalent circuit parameters, this requires a slip-
dependent mutual inductance and secondary resistance.

The secondary current flow pattern was computed by Mosebach
using a two-dimensional theory which allows for unrestricted
current flow in the x, z plane. His results are shown in Figure 26
for two values of effective Reynolds number (r's). For large r's,
the flow pattern is nearly rectilinear and similar to the flow lines
shown sketched in Figure 19a. For r's equal to five, a more nearly
television-screen type pattern results. Since the one-dimensional
Mosebach theory is restricted to rectilinear-type flow patterns,
it should yield more accurate results when applied under conditions
of large effective Reynolds numbers.

The Mosebach treatment of the transverse edge-effects leads to
[ ]
an effective secondary conductivity o , which depends on the lon-
gitudinal harmonic order n,
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[ ]
g = S 3 (100)
1 + zldsa n

The effect of the sidebars is contained in the term in the denom-
inator which is a function of the overhang distance ds’ the half-
core width Zqs and wave vector amplitude a n. Since the overhang
distance ds cannot be zero in the Mosebach model, as otherwise
there remains no return path for the secondary currents, this
poses a problem in treating LIMs with zero or near-zero overhand
distances.

The Bolton treatment of the transverse edge-effect leads to
an effective secondary resistance in parallel with an effective
magnetizing reactance given by

R. = K.°R

2 2

X_ = K,*X

2
L
m 1 "m
where K, and K2 are defined by,

1+ szczxﬁ/xi K
K, = g~ K
Y. B S

K17 % 1 +s
For the TLRV operating at 165 Hz, K1 varies from 1.0 to 0.4 as the
slip goes from 0.0 to 1.0, and Kz varies from 2.47 to 2.72 as the
slip goes from 0.0 to 1.0. The latter range of parameter values
is to be compared with the denominator of Equation (100) which
equals 2.32 evaluated at the harmonic order of peak flux density
amplitude. (For KP equal to two, the peak flux density harmonic
occurs at n equal to five.)

(2)

In the Yamamura theory of linear induction motors, the Bolton
factors Kl’ Kz are used to correct for the finite width of the LIM,
but in a different manner than used by Bolton in his analysis.

The Yamamura treatment assumes X remains constant and secondary
conductivity is modified by the factor KI/KZ. In addition the
primary current deasity is replaced by K;x (primary current

density. When applied correctly, the Yamamura treatment is equiva-
lent to that of Bolton.
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It is interesting to compare the different results which would
have been obtained had the Bolton factors been used in place of
Equation (100) to compensate for edge-effect. Table 19 gives the
thrust and airgap power for the TLRV computed for two slips using
the two different methods for treating edge-effect. To provide a
further comparison with Yamamura's treatment, the LIM model was
assumed to comprise a continuous primary iron. The Bolton cor-
rection was applied to the Mosebach results by setting o* = g, and
replacing the secondary conductivity by (Kl/KZ'c), taking care to
correct the final results for the reduced primary current density
using the K1 factor as described above. Both methods yield almost
the same thrust value at s = .0928 but give somcwhat poorer agree-
ment at s = 1.0. This is not surprising since the edge-effect
correction is greater at high slip-frequencies and large values of
slip. For comparison, the thrust and airgap power computed with
the Yamamura theory is given in Table 19. 1t is interesting that
the Yamamura results tend to lie midway between those computed via
the Mosebach theory using the two methods for correcting edge-
effect. The exception to this is the thrust computed for slip of
0.0928.

TABLE 19. TLRV THRUST AND AIRGAP POWER COMPUTED USING THE
MOSEBACH AND BOLTON METHODS FOR EDGE-EFFECT CORRECTION
(Included in table are results obtained using Yamamura
theory with Bolton methods for edge-effect correction)

Edge Correction Thrust (n/side) Airgap Power
(KW/side)
Mosebach YamamurajMosebach Yamamura
Mosebach: Eq'n 46 3398 - 674 -
s=,0928
Bolton: xl’KZ 3380 3621 600 634
Mosebach: Eq'n 46 1201 183
s=1.0
Bolton: Kl,Kz 1421 1299 208 195
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2.3.3.3 Further Boundary-Effect Considerations

LIM characteristics are altered in varying amounts by the
finite size of the primary winding and primary iron core structure.
In this section, the cumulative effects of finite primary current
winding and finite primary iron core on the TLRV thrust-versus-

slip characteristics are examined.

Four different LIM models were considered for this purpose
having boundary limiting characteristics as shown below. Model A
corresponds to an 'ideal' LIM having no boundary limitations, while
Model D describes a LIM having finite primary winding and finite
length of iron core. Modeis B and C describe configurations with
boundary limitations intermediate between those of Model A and D.

Model Primary Winding Primary Ferromagnetic Region
A Infinite in x,z Infinite i1n x,z plane
plane
B Finite in x-dir,. Infinite in x,z plane
Infinite in z-dir.
C Finite in x-dir. Infinite in x,z plane
Finite in z-dir.
D Finite in x-dir. Finite in x-direction
Finite in z-dir. Infinite in z-direction

The LIM thrust computed as a function of motor slip is shown
in Figure 27 for the different models. 1In the absence of boundary
limitation effects, Model A predicts a peak thrust approaching 51
kilonewtons at a slip near 0.01. The finite length of primary
winding (Model B) mainly causes a reduction in thrust at slips
below 0.2. Limiting the width of the primary winding (Model C)
results in a large increasc in thrust over the full range of slips,
while the addition of finite ferromagnetic primary (Model D)
reduced thrust at slips below 0.2, in a manner not dissimilar to
that produced by the finite length of primary winding.
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2.3.4 Mosebach Model Applied to TLRV § LIMRV LIMs

The thrust predicted by the Mosebach one-dimensional LIM
model is compared with similiar predictions based on the mesh-
matrix model. Both the Mosebach and the mesh-matrix models take
into account the finit= itength of the stator (iron) core. The
main difference between the two models lies in the mathematical
solution for the fieid quantities. The Mosebach theory describes
the field in terms of Fourier series; the mesh-matrix theory uses
discrete elements to describe the continuous secondary structure
and computes field quantities using a summation of contributions
from discrete elements along the length of the motor. In assign-
ing equivalent circuit parameter values to the mesh elements,
Elliott adjusts the sidebar resistance so that the total mesh
circuit resistance is equal to the resistance value given by the
Bolton edge-effect analysis. Since the equivalent Bolton second-
ary resistance with edge-effect included is derived for a funda-
mental excitation wave only and neglects end-effect contributions,
it cannot describe accurately effects occuring with higher-order
harmonic excitations and field distributions. Since the differ-
ences in motor characteristics predicted by the Mosebach and mesh-
matrix models depends on the above factors which are difficult to
quantify, the comparison of results of the two methods are presen-
ted without any attempts to explain causes for differences between
the predicted results.

The LIM parameters describing the TLRV and LIMRV motors are
given on the next page. The values of primary core separation
(air gap) and secondary thickness include corrections for the
Carter factor and structural (web-1like) characteristics of the
secondary. The widths of the secondaries are adjusted to compen-
sate for asymmetrical positioning of the secondaries relative to
the primaries using the theory of Bolton.(7)
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TABLE 20. TLRV LIM PARAMETERS IN MOSEBACH MODEL

Turns per Coil (N) = 4

Pole Pitch (1) = 0.448 m.

Core Width ( 2c) = 0.1905 m.

Poles (P) = 5

Core Length (15) = 2.56 m.

Air Gap (g) = 0.0171 m.*

Phases (m) = 3

Slots per Phase (q) = 5

End Half-filled Slots (e) = 5

Secondary Thickness (b) = 0.0066 m.
Secondary Resistivity (p) = 0.416x10” ' ohm-m.
Periodic Cell Length (KP*tp) = 4,48 m.
Maximum Order of Harmonics (NMAX) = + 50

TABLE 21. LIMRV LIM PARAMETERS IN MOSEBACH MODEL

Turns per Coil (N) =1

Pole Pitch (rp) = 0,355 m.

Core Width (2c) = 0.254 m.

Poles (P) = 10

Core Length (ls) = 3.81 m.

Air Gap (g) = 0.024 m.*

Phases (m) = 3

Slots per Phase (q) = 5

End Half-filled Slots (g) = 5

Secondary Thickness (b) = 0.0071 m.
Secondary Resistivity (p) = 0.416x10" 'om-m.
Periodic Cell Length (KP*P*rp) = 7,08 m.
Maximum Order of Harmonics (NMAX) = t 43

¥*Tncludes Carter Factor
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2.3.4.1 TLRV LIM Thrust at Rated Speed

The TLRV thrust versus stator excitation frequency is shown
in Figure 28 for the one-dimensional Mosebach model. The dashed
curve describes the corresponding thrust predicted by the mesh-
matrix model. The Mosebach theory predicts motor thrust to
decrease rapidly to zero as the slip-frequency is lowered from
185 Hz to 160 Hz. This rapid decrease in thrust with slip-
frequency is partly due to the finite length of the primary iron
core which generates end-effect waves which reduce the net thrust
developed by the LIM. Both the Mosebach and mesh-matrix models
predict a thrust decaying rapidly to zero near 160 Hz; however,
the peak thrust predicted by the Mosebach model lies about 20
percent above that predicted by the mesh-matrix model. This
latter is consistent with similiar results obtained using the
Oberretl and Yamamura computer models, which give peak LIM thrusts
in excess of that predicted by the mesh-matrix model.

2.3.4.2 LIMRV LIM Thrust at Rated Speed

The LIMRV thrust versus excitation frequency is shown in
Figure 29. The mesh-matrix prediction agrees with the Mosebach
predicted except in the region of peak thrust, where the mesh-
matrix result is characteristically below that of Mosebach as well
as other predictions. The somewhat better agreement between the
Mosebach and mesh-matrix predictions for the LIMRV as compared
with the TLRV is probably the result of reduced end-effect inter-
actions in the LIMRV compared with that of the TLRV.

2.3.5 Summary of Mosebach Theory Applied to TLRV § LIMRV LIMs

Magnetic end-effects caused by the finite length of primary
core are shown to degrade TLRV LIM performance under conditions of
high motor speed and low slip. This phenomena has certain charac-
teristics similar to those associated with the MMF end-effect,
high motor speed, and low slip. Under such conditions, the total
real power delivered to the motor remains constant but the frac-
tion converted in usable mechanical power is reduced. This is
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reflected in a drop in motor efficiency at high speeds. For the
TLRV operating at rated speed (300 MPH) and a slip of about 1/10,
theory predicts a drop in motor efficiency from 77 to 33 percent
due to magnetic end-effects.

The TLRV and LIMRV thrust-versus-frequency characteristics
were computed for rated motor speeds using the Mosebach (one-
dimensional) computer program and compared with the corresponding
predictions given by the mesh-matrix program. At high slip-
frequencies, the agreement was fairly good with the maximum spread
in thrust amounting to less than ten percent. Magnetic end-effect
was observed to be considerably more promounced in the TLRV LIM
than in the LIMRV LIM, a result due to the characteristicly higher
speed of the TLRV LIM.

Constant input voltage calculations were made for the LIMRV
LIM at five different motor speeds. The computed Mosebach thrusts
were compared with thrust data obtained from test runs at Pueblo,
Colorado. At speeds of 140 and 178 MPH, the predicted thrusts
were within three percent of measured thrusts and at low speeds,
within ten percent of measured thrusts. Similar calculations
performed on a constant input current basis gave somewhat poorer
agreement at the higher motor speeds than those on a constant

voltage basis. .
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2.4 COMPARISON OF OBERRETL, YAMAMURA, AND MOSEBACH COMPUTER
MODELS AS APPLIED TO THE TLRV § LIMRV LIMS

The previous sections have described the Oberretl, Yamamura,
and Mosebach LIM models and the application of the respective
computer predictions for the TLRV and LIMRV motors will be re-
viewed with an attempt to identify any significant differences in
motor performance as predicted by the three theories.

The motor parameters used in the calculations have been
previously listed in tabular form in the sections describing the
different LIM modeis. The values for the air gap (g) include the
Carter Factor correction, which amounts to a 14 percent correction
for the core-to-core separation in the LIMRV LIM and a 7 percent
correction for the core-to-core separation in the TLRV LIM.* The
calculations of LIMRV thrust given in this section use a value of
electrical conductivity for 6061-T6 aluminum alloy equal to 47.7
percent as compared with the valte of 43 percent used in the pre-
vious LIMRV calculations. This revised value reflects the results
of more recent measurements of 6061-T6 conductivity which indi-
cates it is considerably higher than originally reported.

2.4.1 LIMRV Thrust at 5, 40, 80, and 112 M/S

Figures 30-33 show LIMRV motor thrust as computed for motor
speeds of 5, 40, 80, and 112 M/S. The core spacing for these
motor characteristics was 1.5 inches as compared with the core
spacing of 1.875 inches used in the previous LIMRV calculations.
Stator current was 2200 amperes per phase corresponding to 1100
amperes per phase per LIM half.

The computed thrust using the Oberretl theory is consistently
lower than that computed using the Yamamura and Mosebach theories.
This is particularly noticeable at the lower motor speed range
where the LIM thrust using the Oberretl theory lies about 14
percent below the average peak thrust predicted by the Yamamura
and Mosebach theories. Since end-effect is not significant at

¥Carter factor values supplied by Dr. D. Elliott.
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the lower speed range, this difference is probably associated
with the Oberretl treatment of the edge-effect which allows the
primary ferromagnetic region to extend beyond the stator width
and thereby alters the boundary conditions at the motor sides.
At higher motor speeds, somewhat better agreement exists between
the Oberretl and the Yamamura, Mosebach predictions. At a motor
speed of 112 M/S (250 MPH), the three theories yield predicted
thrustswhich vary by only 7 percent.

A study of the LIM characteristics shows that the Mosebach
model leads to a larger thrust reduction at higher speeds than
do the Yamamara and Oberretl models in the lower slip-frequency
range. This could be associated with the magnetic end-effect
associated with the finite length of the primary core range.
This reduction in thrust is associated with the end-effect arising
from the finite length of the .primary core structure. Since only
the Mosebach model includes this refinement of finite core length,
a similiar reduction in thrust is not predicted in the other two
theories. A comparison of the motor thrust in the four speed
ranges shows a progressive reduction in LIM thrust at higher
motor speeds at slip-frequencies below that associated with the
peak thrust of the motor.

It is interesting to note that the Yamamura model leads to
larger thrusts at low slip-frequencies than do the other two
models. It is in this region that end-effect becomes most pro-
nounced. Since the Bolton correction factor which Yamamura uses
to take into account edge-effect neglects end-effect in its deri-
vation, one would expect the Yamamura LIM theory to yield thrust
predictions different from those given by Oberretl or Mosebach in
the region of high speeds and low slip frequencies.

The locus of peak thrust is shown plotted in Figure 34 using
the values gives in Figures 30-33. Included in peak thrust
characteristic is the prediction based on the mesh-matrix method.
Two values of measured thrust are also indicated on the figure.
The measured thrust exceeds the predicted thrust by about 400-450
pounds. The source of this discrepancy is not presently known.
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The use of a lower conductivity value for the secondary would
improve the agreement with measured data.

2.4.2 TLRV LIM Thrust at Rated Speed

The TLRV trust as predicted by the Oberretl, Yamamura,
Mosebach, and mesh-matrix theories is shown in Figure 35. Above
185 Hz, the Oberretl, Yamamura, and Mosebach theories give pre-
dicted thrusts which are in fair agreement, with the maximum
divergence amounting to ten percent. Below 185 Hz, the Mosebach
prediction drops off sharply reflecting the added thrust reduction
due to the finite length of the stator core. This trust reduction
associated with the magnetic end-effect is more prounced than with
the LIMRV LIM due to the higher LIM speed and reduced electrical
length of the TLRV LIM compared with the LIMRV LIM. The peak

thrust predicted by the mesh-matrix method lies below that predic-
ted by the other theories.
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3., CONCLUSIONS

The Oberretl, Yamamura, and Mosebach theories of the linear
induction motor have been reviewed and the LIM models upon which
the theories are based have been examined in detail. The models
have been shown to give theoretical LIM characteristics which
differ significantly over the operating range of the motor.
These characteristics were shown to be sensitive to the boundary
conditions used to describe the finite size of the motor, e.g.,
the finite width and length of the primary and secondary LIM
structures.

Values of LIMRV LIM thrust were éomputed for constant primary
current excitation and specified operating slip-frequencies. The
thrust predicted by the three theories deviated no more than 15-20
percent from each other. The largest thrust deviations occurred
at low slip-frequencies where the thrust is a strongly dependent
function of slip-frequency and motor speed. The Oberretl thrust
predictions tended to be about 10-15 percent below the correspond-
ing Yamamura and Mosebach prediction. The theoretical predictions
based on the mesh-matrix LIM analysis were generally in close
agreement with the Yamamura and Mosebach predictions.

Calculation of TLRV LIM thrust were also made using the three
LIM computer models. The computed values of LIM thrust for con-
stant current excitation and a speed of 306 MPH deviated about 12
percent for the Oberretl, Yamamura, and Mosebach theories; the
corresponding mesh-matrix prediction was approximately 20 percent
below the average of the other three predictions.

The boundary related phenomena were shown to have a large
effect on the LIMRV and TLRV motor performances over the entire
speed range of the two motors. Calculations made for the TLRV
LIM driven with constant current show that the MMF transverse
edge-effect increases LIM thrust appreciably at all motor speeds
while the magnetic and MMF end-effects reduce LIM thrust at high
motor speeds and low slip-frequencies. This is explained by the
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fact that edge-effect is not speed dependent, while end-effect
results from Eddy currents, which are generated when the motor is
moving at high speeds. The effect of finite primary winding and
finite primary stator core on LIM performance is of a similiar
nature; both tend to reduce LIM thrust at the higher speed range
of the motor. The exception to this occurs at zero slip where

end-effect can develop positive thrust in the case of high-speed
motors.

The important features of the Oberretl, Yamamura, and
Mosebach LIM models and their relation to predicted LIM perfor-
mance are summarized below.

3.1 OBERRETL LiM MODEL

a. The primary ferromagnetic region is assumed continuous
in the plane of the motor. This assumption introduces errors in
the description of the fields in the LIM airgap and in the regions
external to the motor as well. As a consequence, the computed
nornal force and stored magnetic energy are overestimated in the
Oberretl model; the input impedance is likewise too large due to
the excessively large field energies computed for the LIM when
operating at high speeds and low slip-frequencies. The assumption
of continuous ferromagnetic region in the longitudinal motor
direction has been shown, in the Mosebach model, to reduce LIM
thrust. The effect of assuming a continuous ferromagnetic region
in the transverse motor direction on LIM thrust is not clear. The
numerical studies do indicate that the Oberretl theory predicts
LIM thrust which tends to be below that predicted by Yamamura and
Mosebach theories at most motor speeds.

b. The Oberretl theory models the LIM as a 2-dimensional
array of periodic cells in the plane of the motor. Ficld and cur-
rent distributions are described by a 2-dimensional Fourier series
using k-vectors, whose fundamental are determined by the unit cell
dimensions. The cell dimensions and the maximum number of harmon-
ics used in the Fourier expansion must be carefully chosen in
order to accurately describe the field distributions in the LIM.
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Failure to do this can lead to large errors in the p.:dicted LIM
characteristics.

c. The Oberretl model predicts substantial flux densities
at both outer edge regions of the motor. This flux is mostly due
to the assumption of a continuous primary iron core extending
bevond the width of the stator.

d. The mathematical development of the theory limits its
application to LIMs with even numbers of electrical poles. This
limitation is the result of the winding distribution factor which
is vali¢ for even pole numbers only. A modified winding factor
has been derived which is valid for both even and odd numbers of
electrical poles.

3.2 YAMAMURA LIM MODEL

a. The Yamamura model assumes the primary ferromagnetic
region is continuous and extends to infinity along the longitu-
dinal axis of the motor. As in the Oberretl model, this assump-
tion results in large predicted normal forces and stored magnetic
energies at high motor speeds and low slip-frequencies. It also
results in somewhat larger predicted thrust than would otherwise
occur.

b. The Yamamura model uses the Bolton edge-effect analysis
to correct for the finite width of the motor. The Bolton correc-
tion factor neglects the end-effect; consequently its use under
conditions in which the end-effect is appreciable can lead to
errors. When applied to motors operated at low speeds and high
slip-frequencies, the 3olton factor probably gives a reasonable
approximation to the correction required for finite width LIMs.

c. The Yamamura model is based on a fundamental primary cur-
rent excitation wave; it neglects higher harmonic excitations
which are generated in real winding distributions. Fortunately,
the contribution of the high harmonic excitations to LIM thrust is
small and can be neglected in most cases. The application of the
Yamamura model to LIMs having layered windings introduces

121



complications since each winding layer interacts differently with
the end-effect.

d. The mathematical solution of the wave equation uses the
theorem of residues to compute the vector potential Fourier inte-
gral. Two of the three significant roots describe damped exponen-
tial waves; the third root corresponds to the normal excitation
wave. Little difference results if the negatively propagating
damped wave is neglected in the final solution. The description
of the LIM EM interactions in terms of a single excitation wave
plus a damped exponential wave has a conceptual advantage in that
the wave interactions are easy to visualized and solutions can be
written in closed form. )

3.3 MOSEBACH LIM MODEL

a. The Mosebach model describes the simultaneous interactions
of the edge-effect, MMF end-effect, and the magnetic end-effect;
it is the only one of the three models to attempt to include
effects of finite iron and current excitation in the analysis.
The model uses an approach similiar to that of the Oberretl model
to describe the field and current distributions using a 2-
dimensional Fourier series. The finite stator core is described
by an airgap function. The boundary effect due to the finite
length of the iron core becomes significant only at high speeds
and low slip-frequencies. Due to the increased number of expan-
sion terms required to describe the airgap function, the computer
time (and cost) is considerably greater than that of the Oberretl
and Yamamura computer models.

b. The Mosebach model limits the flow of secondary current
to rectilinear patterns such that the currents within the active
region of the motor flow in the transverse direction and currents
outside the active region flow in the longitudinal direction.
This restriction impacts on the computed edge-effect and the
dependence of the edge-effect on slip frequency and rail configu-
ration. The Mosebach edge-effect treatment becomes equivalent to
the Bolton analysis at low slip frequencies but diverges from it
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at high slip-frequencies. It is interesting that the Mosebach
predicts a value for the TLRV thrust at a slip equal to 0.8 which
is about 6 percent below that predicted by the Yamamura theory.

c. The finite iron core structure is described by a Fourier
series representing an equivalent airgap function. In some
cases, the amplitudes of the airgap harmonics can be comparable
with the motor pole pitch. Since the theory assumes the airgap
is much less than the pole pitch, this violates one of the basic
assumptions of the model. The effect which this conflict has on
the accuracy of the theoretical results is not known.

d. The computer time required for LIM calculations can be
reduced by restricting the range of harmonic terms used in the
Fourier expansions. The number of positive harmonics used in the
field expansion could be reduced since these harmonics contribute
little to the end result.
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A LSALT AR —_

CT =m(FEYC (F])oLF O (=K]1))/(CEXF(E))=CEXP(=E1))

‘FTeslnv/rY =738
BRFI=STNE (21 ~a8G) of TASCOSH (ALNASG)

“““ITF?‘tF!FTFFFIFRTtrfi*STVVIIth'G? -
. F1=aJ2°CA3S(1,/74Gr])

N T4 O E R [T AL Gt
FYsFYs  BpesLan2eF eF)e(l,-(CauS(ETA))*92) /AI/AI#1000,

GI=AGFP7RPT
PlePl=22008i RaeFea 11'0a j20A 2%AIMAG(GL)/7A1/A11000.

NENe7 .
IF({Me]118013415

IS TR T Y
T(e) =S

FIXIKTEFX
FIY(x)=FY

8 e~ C T W UTR WL PRAYAL/PT
PT(x)zCVw)

“ PPk J=ary
HeXe)

eI T T e s e
TF(S=]1.M 10 el a8

LTINS S P u e X 1Y Ty Vo -
URITE(L4&V5 el 020D 0 el

e TN T 7SI R IT
WOTTF (Koo
o SRy Ty - TeTTET T T -
28 wWOITE (A3 T b TR(K) oFTY(K) oPP(K)ePT (K)
TP e -

con

Reproduced |
best .v".‘.lau.'?mb
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Listing of Yamamura Computer Program

C PROGRAM COMPUTES LIM OUTPUT PARAMETERS USING YAMAMURA THEORY FOR
T T CONSYANY CURPENY EXCITATION. EDGE EFFECY INCLUDED IN CALCULATIUN.
IMODF2]1 FOR VARTABLE FREQUENCY, IMODE=0 FOR VARIABLE SLIP,
THRUST AND POWEP COMPUTED FOR ONE CORE SIDE. MULTIPLY 8Y 2 FOR
TOTAL THRUST. POWER OF DLIW™,
REQUIRED INPHUT DATA: AL=P X TP, W=SEC WIDTHe Cx=HALF CORE WIDTH
B2SEC THICKNFSSe GAP=AIRGAP. TPzPOLE PITCHe PaNO. OF POLES
“E&N0, OF WALF FYLLEC SLOTS, NaSTOTS/PRASE BELT, ANETURNS/SLOT
AMzNO, PHASESs IMODEaFREQ=VERSUS=SLIP OUTPUT» PS=SEC RES X 10000000,
AMU?=REL PERM, OF SECe AMU3=REL PERW OF ATR. AY1=CURRENT/CONDUCTOR
FREQ=MOTOR FREQUENCY, FOR VARIARLE FRFQUENCY OUTPUT FORMAT. CHOOSE
FRED FOUAL TO INITIAL INPUY FREGUENCY. FOsWOTOR SPEED/2./TP
MKS UNITS. LENGTH IN METERS, FORCE IN NEWTONS
T (] JYNHBMRDASUV — — T T Tt T T T
COMPLF X FX21oFX22¢FNILeFXIPeF X1 eFXL2
COMPLEX 2BoZ2C07(9) sCAMMAGEL9E24C1 0029514852
COMPLEX F () 4DF (3) +CERF 4G () oFX19FX2+FX3+02
COMPLEX DGAMMA,AAGBR «GAMMA?
NIMENSTION T(20)4FX{20) «FY(20)+DFL (3+20) +POVWER (20) +EFF (20)
X TSHFRFOE.FS 001X s TAFOE F 8, 1o T o JHITE FE D TX IRTP=,FE.I) T
2 FORMAT( 17‘0?"'!'61'9Hp(“9GA°’05!03“""
3 FOPMAT(aXeF5,2e2Ke2 (1XeETN3V 01X oF 6T}
- o FORPAT(llQZHLCq'6.30lloZHBFQFG.bol102“38076.301102NC807603
1o XX ohNGAPZ oF & Ve 1N021P=oF 3, 001X, 2HM=4F2,0)
S FORMAT (1Xs2HERoF3.001Xe2MGEeFIaNelX e INP22eF643¢1Xs2HNE,

P

!nnnnn&nnnnn
i

PO T SR )

TFT, 0, TN SHANIZ22 F6. 2o TN SHAWNI=,F6,77 - T
. 6 rOﬂM‘T(?XOFQQQQFToJO?(1!.?77.2)o?lo?(llf‘o3)o3'5‘
G FORMAT (AT, THF ¢ IXoSHXT (1) ¢6X«SHXT(2) ¢ 10X +SHXI{I) oEX +AHETAL
101X e6MHETAZ e IN¢AHIERO o1 XsbHTERL 01X 4HIFR2)
40 FCAMATIIN.6FY0.Y)
] FORMAT(6F10,.4)
el e
43 FOAMAT (4F10,)
. &6 FORPMATI(ZFI0.Y)
SOT2sSQRT(2,.)
- S=1.0
- P1=3,14159
. W= . "wY - T ’ T T T T
Nzl
— T R CHRTINUE
READ (S0h ' oENNSQQ) AL oW e CoBGAPL TP
READ (S+42)PoF 40,AN¢ AN, TMODF
READ (S+63)PS.AMU2AMUILATL)

* 8 5 & & &

T READTS«&RIFREN.FO o ' o i o

XMONE = INOOE
T AKsPY/TP

GF=2,9P19FREQPANU®B/PS/ (Be2,*GAP) /AK/AK

- T ALPRASPT/U/AM
ANW1=SIN( (AMOQ=F)/2,2ALPHA) S IN(Q®ALPHA/2,) /SIN(ALPHA/2,)

————KJT8 . YSUTZWANSITIWARWIZTP71000OR0, — ~— ~~—~—— —  — = T T
K=l

€ ~ WEXY COWPUTE BOLTONYS FACTORSSETAI.ETAZ
10 S=].=FQ/FREQeXMODE
T GSsGFeS
GAMMA ) SAKOCSORT : 144 (0001.0)*GS)
——€ZECEXPICYGAWEYY T T T - T - T
$220,5% (E2-1,./F2)
T TR SR IR0 1. /62)
TnHs§2/C2
T REATASY o 7 {14 CAMMAT O TNHETANH (AK® (W/20=C) ) 7AK)
UVEAMBDASTNN/GAMMAL/C

g * g 8 8 2 68 6 ¢ T 8 3B}
'
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USNE AL LUV)
VsAIMAG LUV)
LT T T ETATE (T o =U=650V) 711, =68 0Ve586S o)
) ETA22((],=GSOV) 02+ (GSPU) 9821/ (] ,~GS*VeGS®*GSOU)
v 7T TPZePS/ETAL

c NEXT COMPUTE RNOTS CF F(N) USING NEWTON=RAPHSON METHOD. 2942C ARE

T FIRST APPROXTWNATION ROOTS.

. Al=2,*PlOFREN®AMU/P2

T K2sA 19874, 70%7 (GAP+E/2,)

. 7A==AK

T T TRE T U1 008220 ({1, =8) =CSORT ((1,=8)022+(0,0+1,0)2AK/0282,))

. 2C2(0,00=1,019429((1,=5) oCSORT ((1,-5)2#24(0,001,0) *AK/A2%2,))

. Z{=72A -

“ 2(2)=28
T T =1t

15 CONTINUE

. S2(1.,-FO/FREN) *XMODE ¢S® () ., =XVODF)

- GSsGFeS B

. GANMAL =AK®CSNRT (1.9(0.001.0) *GS)

o  E2mCEXP(C*GAMMAL)

. 5?*0.5'(8?-!./F?)

~ . C2m0,S%(E2¢]1,/ED)

. TaH=g2/C?

AMBDAS] o/ (1. 2GAMMAL STNHOTANKH (AK® (W/2,=C) ) 7AK)

: UVSAMBOA®TNN/GANMAL/C

=____ . UsREAL (UV)

VsATWAG (UV)

ETAls(1,=U=GSoV) /(] ,=GSPVeGSOGSIU)

ETA22( (] ,=GSOV) #0824 (GSP) 202}/ () ,=(S2VeGS*GS*U)

= PRupS/ETAY

- Al=2,*Pl1oFREN®*ANU/P2

AJI=ETA20A7

DO 2% N=1e)

1ENDsS )

IF (N,EQ.)) IENDS)

DO 1A Is)oIENO

ZIR2sREAL (Z(2))

212=AIMAGLZ2(?))

" GAMMAIZZIR297R2-712%212-A19712% () e=S) /MK

- GAMMALS2 ,OZR28712+A192R2% (1 .~S)/AK+A])

. GANMA22Z (N) #2 (N)

- )6 GAMPAR= (GAMMAR. (0,001,0)°A1C(Z(NI®(1a=5)/AKs],)) _ .

.- GAMMASCSORT (GAMMAZ)

v 90 DGAMMAS(ZIN) *(0,001.0)0AL10(),=5)/2./7AK) /GAMNMA

E1=CEXP (GAMMA®SRA/2,)

___ _E2=CEXP (] (N)*GAP)

C120,.5%(Elel,/€1)
= (g2’ .
sl...s."l“ol",

- $2%0,5%(F2-1,/F2)
IF(N,EQ.1)60 TO 20
AAEC]#S2¢7 (N) 01 2C2¢ (GAP) «ANUI/AMUZOGAMNASS | 9S28 (GAP)
RB2Z (N)OR/2.951952¢ MU/ AMIIZE (S 9C206ANNA®E/2,.9C] *C2)

»

LI O I A

|

sAAe 0098 o e
F(N)=Z (N)2C10S2:ANUI/ANU2OGANNASS ] oC2
__ DIsfF(N)/OERF
ADZ=CABS (D2)

18 2(N)sZ(NV=02
c END OF NEWTON-RAPHSON CALCULATION.
(MoK 8=AL0G] 9 (ADZ) .
3 DEL (NoK) sPARAMFTER CEFINING WOOT CONVERGENCE. DEL SHOULD ®€ POST-
€ TIVE AND GREATFR THAN 3 FO® CORPECT RFSULTS,
20 F (NI 22 (N) 9C1 9820 ANUI/ANU2RANMASS | 9C2
OF (N) SDERF o
G(N)SCLOC2+GANNA®E1982/2 (N)
25 CONTINUE
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FX12=POTPOG(1)/F(1)®(0.,0+]1,0)
ZR2sREAL (2(2))
T T TTTZ=AIMAGTZ (P SAL
o »_7_[3_’!'”‘6(2‘1) ) SAL
, ZRIA=NEAL (Z (M)
. JF(Z712.67¢30.0712230,
. IF(213.LT.=20,)7132=30,
. FR212 (1o ~EXP(=7T2)®CEXP ((0,041,0)®(ZR2+AK)®AL))

' T X21=FX2V/7(2(2) «AK)

. FXA)2=(],=EX0(ZTI) *CEXP((0,0¢=1,)®(ZRI*AK)®AL))

. ““""szz-a(?iltitzvoAK)/Drtzp
FX3236(3) - (Z(3) ¢AK) 2 (Z(I) «AK) /DF (I)
Fx2=Fx21%¢ 37 i T
FX3=FXI1OF L3

T PONER (K ) s=PTSFRFQTAMIRAYL A2 OREAL (FX) FX2eFXI)92,8CeT000,
FR(NI =0 ,SPAJZ*AII SANUSREAL (Z(1)8FX]12(2;:9FX2¢2(3) *FXI)
1°1000,.%2,°C
CFF(K)=FX(K)®2 , #TPOFREQ® () ,~S) /POVWFR (x)

Y () =FRENSXMOOF o (1.~ XMODE 1 @S
__KaKel
T 28 CONTINUE

FREO= (FREQ*5,) *XMODE FREQ® (1 .=XxMODE)

S2(S=. 1) (1.-XMODE ) +SPXMONE

IF(K=11)15415¢30
c "IWEEE%E'EGSBUVFS 11 OIFFERFNT S| IP-FREQUENCY CASES.

30 fONT NUE
1TV (NEL (2eK) oK=Ts11)
Uﬂl'E(GOll’(0EL130K)0K'|0||)

11 FORMAT( IXol1(1XeFb,.1))
WRITE(Ge0)AL +BoWsCoCAPIP o AM
ITE (6o )EsQePSo AN AMI2 9 AMY]

WRITE (601 iFREQeFQeAT1eTP
32 WRITF (6+2)
DO IS K=lel) ) o o
3€ ::l?!(:.1)t(l)ofxtl)oPOUER(K)-EFF(K)
10

oP
EnD

..l."l'l!.l'l.’.ll-o‘l;;
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